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Abstract: Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the
phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it
produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation,
structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The
majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by
Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to
B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins
(SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that
conservation in sporulation, structure assembly, and germination programs drive the survival and
success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter
pinpointed and reviewed.

Keywords: spore-forming bacteria; Gram-positive bacillus; Bacillus thuringiensis; insecticidal crystal
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1. Introduction

The phylum Firmicutes (now referred to by a new, name, Bacillota) includes known
spore-forming bacteria of the genera Bacillus and Clostridium. The genus Bacillus includes to
Bacillus cereus, Bacillus subtilis, Bacillus anthracis, Bacillus megaterium, and Bacillus thuringien-
sis. The majority of these are soil bacilli and have relevance at the level of the food
industry, pathogenesis, biological weapons, and in biotechnology (nanotechnology, ther-
apeutics) [1–7]. Meanwhile, the members of the genus Clostridium, such as Clostridium
perfringes, Clostridium botulinicum, and Clostridium tetanus mainly have a role in food
spoilage, food-borne disease, intoxication, gas gangrene, pseudomembranous colitis, bo-
tulism, human pathogenesis (toxin production), and in the biotechnological industry
(chemical products) [8–16].

A feature shared between the genera Bacillus and Clostridium is the sporulation, struc-
ture assembly, and germination for survival and DNA protection [17,18]. The manner how
they carry out these biological events at the molecular level is the subject of the present
review, addressing general knowledge of the soil bacterium Bacillus thuringiensis and
insight into the molecular programs that make this bacterium more than a successful insect
pathogen in the environment and in the host [3,4,6].

Sporulation in the phylum Firmicutes plays a fundamental role as a cytological and
morphological process during life cycle. Genes and proteins constitute players in spore
formation and germination [10,17,19–24]. Currently, the high-throughput technologies,
integrated as the omic technologies, should allow for deep insight into the unveiling of the
complex machinery of the sporulation and germination of spore-forming bacteria [25,26].

The genes and the proteins for each stage are conserved among species of Bacillus.
However, in Clostridium spp., there are some differences due to the environmental condi-
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tions vs. the soil rhizosphere [1,6,8,17,27–30]. Indeed, a recent study using 108 genomes of
different genera of the phylum Firmicutes found that the majority of the bacilli share a core
of at least 60 genes deriving from the 500 genes that participate in sporulation [24], while
many spore coat proteins (small acid-soluble proteins) and germination proteins are not
present in Clostridia and in some Bacilli. These shed light on the conservation, but also on
the evolution and diversity, in both sporulation and germination in the phylum Firmicutes,
thus implying a lifestyle shared between the genera Bacillus and Clostridium [2,24].

Spores are the forms most preserved, resistant, and propagated to the utmost degree
in any geographical latitude [11,25,31]. Spores are highly resistant to extreme conditions,
including physical conditions (such as temperature, pH, radiation), chemical conditions
(salinity), or even biological conditions (selection pressure) [32]. Indeed, bacteria have
survived under the conditions of an ancient primitive earth thanks to their ability to
sporulate [11,24,31,33].

However, how do the spores permit the microorganism to survive and persist for long
time periods? A cue is the structural architecture of the spore. Recent electron cryotomog-
raphy (ECT) permits three-dimensional (3D) study reconstruction of the Gram-negative
and Gram-positive bacterial cell walls. This analysis, in conjunction with biochemical
and genetic evidence, supports the hypothesis that sporulation could be the ancient bio-
logical evolution process that gave rise to the second membrane in diderm cells (Gram-
negative bacteria). The interconversion of the thin and thick peptidoglycan layer facilitated
this process.

The second membrane in diderm bacteria is richer in lipopolysaccharides (LPS) and
outer proteins. In other words, the chemical composition of the outer and inner membranes
of the spore play a role in resistance and protection under harsh conditions. The dynamic
of sporulating regulatory proteins, the morphogenetic coat, and other proteins are involved
in the early, middle, and late stages in sporulation or in spore biogenesis [34]. On referring
to Bacillus thuringiensis (Bt) and its remarkable soil life, there are thousands of studies
regarding its mechanism of action and its biotechnological application as a bioinsecticide.
However, Bt has a spectrum of action due greatly to the battery of proteins produced (ICPs)
at the onset of sporulation. Recent works have revealed by combining proteomics and
metabolomics that there is metabolic regulation mechanism of sporulation and ICPs synthe-
sis. Specifically, these metabolic pathways are involved in synthesis, energy storage, carbon
supply, and nutrients (amino acids, sugars), and these are under close regulation (tran-
scriptional and translational) during sporulation and crystal synthesis [35,36]. Nonetheless,
there are many questions to answer in terms of the molecular evolution and conservation
of the core set of molecular components, the master germinating receptors (GR), the master
SpoVA, hydrolytic enzymes, the master dipicolinic acid, import and export, gene–operon
organization, biochemical composition, PG, the structural organization of the lipids of the
layers between the spores, the germinating spore, and the vegetative cells [37,38]. This
knowledge can impact many applications that range from immune stimulants, such as
probiotics [39], to nanotechnology as the ideal and model vehicle for drug delivery and
vaccines, and in evolutionary biology, developmental biology, and ecology [6,30,40]. No
less relevant is that Bacillus thuringiensis is successful either outside or inside of its host
(insects). Some authors suggest that there is a battle between Bt and the insects [6]. Oth-
ers propose that there is a co-evolution [41] of bacteria–insects, referring in particular to
the hundreds of Cry toxins that are produced concomitantly with sporulation [6,42,43],
enabling these toxins with binding properties to insect midgut receptors. In nature, in the
soil’s rhizosphere, there is a fruitful crosstalk among the bacterial community that involves
competence for nutrients and for survival, in which the spore plays a primordial role.

2. The Soil Spore-Forming Bacterium Bacillus thuringiensis

The identity of Bacillus thuringiensis relies on a set of pore-forming proteins,
known as Cry and Cyt toxins, to kill insect larvae. Therefore, Bt is considered an insect
pathogen [41,42,44–46]. B. thuringiensis belongs to the genus Bacillus, a rod-shaped Gram-
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positive soil bacterium that contains genomic DNA and extrachromosomal DNA (plasmids).
Interestingly, many plasmids encode the delta-endotoxins or Cry proteins, a strategy of B.
thuringiensis to survive in the harsh environment of the soil’s rhizosphere and for insect and
mammalian targeting [41–43,47]. Commitment in the life cycle of B. thuringiensis consists
of a series of morphological and cytological changes that end with spore formation and
crystal production. This series includes gene expression and biochemical and genetic pro-
grams [40,48]. Remarkably in B. thuringiensis, there is an arsenal (around six plasmids) of
extrachromosomal DNA (pHT77 plasmids) encoding the delta-endotoxins or Cry proteins),
the pAW63 plasmid harboring the RAP-PHR system [49–55], and also encoding another
regulon system [56].

The Plasmid-Encoded Bt Crystalline Proteins

The insecticidal delta-endotoxins of Bacillus thuringiensis or Cry (Crystalline) proteins
have been the subject of intense research during the last three or four decades [6,42,43].
These crystals comprise an array of immature protoxins with a molecular weight of 130 kDa,
encoded in large plasmids [49–51]. To be active in the insect larvae host, protoxins are first
solubilized and then processed in the C-terminal region favored by the enzymatic action,
yielding a toxin with a molecular weight of 60–70 kDa [57,58]. The 3D structure of several
Cry toxins was elucidated by X-ray resolution crystallography [59], including Cry1Ac [60],
Cry2Aa [61], Cry3Aa [57], Cry3Ba [62], Cry4Aa [63], and Cry4Ba [64]. Moreover, based
on sequence identity, it has been determined that the majority of the Cry toxins share
three-domain structures with five highly conserved blocks in domain I [57,58]. Domain I is
formed by a bundle of seven alpha-helices, with one central helix surrounded by the six
other alpha helices [57]. The secondary structure of the alpha helices of domain I resemble
bacterial pore-forming proteins, such as bacterial colicin I. Furthermore, the length of the
helices of Cry domain I are sufficient to transverse cellular membranes [57,58]. Domain II
is the most hypervariable region of the Cry toxins. The secondary topology is three anti-
parallel β-sheets packed together in a β-prism with pseudo-three-fold symmetry [43,65–67].
Insect binding specificity is determined through the interaction of the loops of domain II
and the receptors immersed in the insect’s midgut. Domain III forms a β-sandwich [57].
The latter is an arrangement of two anti-parallel β-sheets packed in a “jelly roll” topology.
Specifically, in the case of Cry1Aa and Cry1Ac, a loop extension in Cry1Ac creates an
N-acetygalactosamine (GalNAc) binding pocket implicated in receptor binding and further
toxin proteolysis [68–71]. The action of the Cry toxins depends on the presence of a set
of insect midgut receptors. This molecular crosstalk between insect receptors and the
delta-endotoxins of B. thuringiensis strengthened a co-evolution theory for survival and
success [3,6,41,72–78].

3. The General Sporulation Mechanism in the Genus Bacillus

The challenge and the goal objective of sporulation in the genus Bacillus and in other
spore-forming bacteria such as Clostridium is DNA protection and survival [17,79,80].
The latter process is accomplished by the Firmicutes phylum, despite pressure selection,
evolution, and diversity in the set of molecular components comprising the program and
that crosstalk [24,79,81–85]

One of these systems is the Rap-Phr quorum sensing system, which regulates dif-
ferent bacterial processes, remarkably the commitment to sporulation in the Bacillus
species [86–93]. How do Rap proteins act in sporulation? Rap proteins act as quorum
sensors, forming a response regulator with a TPR (tetratricopeptide repeat) domain, a
hydrophobic pocket able to bind the signaling peptide, thus inducing a conformational
change and modulating regulator activities [91,94,95]. Therefore, RAP proteins act on
phosphatases, an intermediary component of the sporulation phosphorelay system in
Spo0F. Rap63 exhibited moderate activity during sporulation and is inhibited by the Phr63
peptide [48,96]. In Bacillus subtilis (frequently used as a model of the genus Bacillus), the
starting sporulation programs is characterized by the phosphorylation of the master regula-
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tor Spo0A [24,34,97–103]. Across the genus Bacillus, the sporulation process is regulated
by a cascade of sigma factors as follows: sigma F (σF); sigma E (σE): sigma G (σG), and
sigma K (σK). Sigma factor K (σ(K) is a sigma factor conserved among the Bacillus genera,
except in the genus Clostridium [24,34,48,103,104].

The sporulation program conserved among the members of the genus Bacillus com-
prises the following seven cytological and morphological changes [81,82,105] (Figure 1A):
Stage 0 to Stage I, Axial filamentation; Stage II, Polar septum formation; Stage III, Forespore
engulfment (ơF, ơE); Stage IV to Stage V, Cortex and coat assembly, and Stage VI to Stage
VII, Spore maturation and mother-cell lysis. The morphological and cytological changes
impaired in spoIID, spoIIM, and spoIIP mutants [85,106–111] and in the spoIIB–spoVG
double mutant. However, the deletion of the spoVS gene, controlled by ơH, permitted to the
spoIIB–spoVG double-mutant, to complete engulfment [100,101,112,113]. SpoVA proteins
are involved in the uptake and release of nutrients from the core during the uptake of
Ca2+ dipicolinic acid. The lytic enzymes SleB and CwlJ, found in bacilli, hydrolyze the
spore cortex [48]. The spore is formed by an assembly process that involves a four-layer
coat. The coating proteins described for Bacillus subtilis include cot, cot B, saf A, cot H,
cot O, cot E, ger E, and cot E ger E [34] (Figure 1A). Assembly starts from the external
outermost amorphous (crust) layer, followed by the rodlet, the honeycomb, the fibrous,
and the nanodot particle layers, and finally, the undercoat/basement layer. Interestingly,
under the exosporium of B. thuringiensis [114–118], a hexagonal honeycomb is exposed.
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Figure 1. (A) Sporulation, structure assembly, and germination in the genus Bacillus. Gram-positive
spore-forming bacteria, Bacillus and Clostridium, follow similar morphological and cytological pro-
cesses. There are some differences among members of the genus Clostridium. Sporulation program
in the genus Bacillus is conserved. The spore allows us to fight against the selection pressure in
the different niches and ecosystems. Therefore, the sporulation process is essential for resistance,
survival, and success, and even to co-exist forever. Briefly, the sporulation process is a mechanism by
which a set of sigma factors spov genes that encode the specific SPoVS proteins are involved in the
regulation of the expression of the genes and proteins that accomplish each of the steps. A principal
step in the sporulation of vegetative cells starts with the formation of septa (FTzS ring), followed
by asymmetric division of the mother cell and the forespore, leading to the release of the forespore.
(B) The components of the spore of B. thuringiensis are outlined, revealing the presence of the bipyra-
midal crystal (ICP) synthesized concomitantly with the sporulation. During the spore and structure
assembly, there is the expression of several cot genes. These genes and their products play a role in
the assemblage of the external and internal layers, similar to that of the bacteriophage T4. Moreover,
some members of the genera Bacillus possess an exosporium, -an outer layer missing in B. subtilis-
that confers protection and a direct connection with the environment. The expression and production
of the insecticidal crystal proteins (ICP) (in yellow) are under the regulation of the sigma factors, and
together with sporulation, both are under metabolic regulated mechanism at transcriptional and
translated level. Some of the SpOV proteins also participate in crystal production. Thus, the spore of
Bt is well-armored as an evolutive advantage for survival and success [54,55,114–121].

The lattice constant of the honeycomb structures was approximately nine nanometers
(nm) for both B. cereus and B. thuringiensis spores, visualized using atomic force microscopy
(AFM) by [117]. It was also possible to visualize the species-specific spore assembly and
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nanometer-scale structure of the spore’s surfaces. Ensamblage of the fibrous layer involves
the Cot H- and Cot E-dependent proteins and the cot E-specific protein [110]; this is
similar to the assembly of the spore-coating proteins, in that it mimics a non-mineral
two-dimensional (2D) crystallization seeding pattern that begins to assemble the coating
proteins from the inner to the outer layers in a similar manner as has been described for
the bacteriophage lambda [122]. This assembly process is well characterized in B. subtilis
(Figure 1A).

In bacterial-cell division, the structural and cytokinetic functions require the formation
of the septum, which involves the assembly of a complex of proteins. Similar to B. subtilis
sporulation, in B. thuringiensis sporulation, the sporulation-specific proteins Spo0A and
SpoIIE play a role in gene regulation and in the determination of the structural properties
of the specialized sporulation septum. Spore germination, nutrients, and mRNA number
abundance participate, possibly providing ribonucleotides [123,124]. In B. thuringiensis, the
mRNA number is 10–50-times higher than in other species of Bacillus and Clostridium [119].
How is the distribution found of mRNA in the spore compartments? A low abundance
of mRNA is present in the mother cell and a high abundance of mRNA in the forespore
(Figure 1A).

The transcription of these mRNA is under the control of the sigma factors F or G, and
this can be similar among species of Bacillus. A minority of mRNA in the spores of these
species is present at more than the molecule-per-spore, averaging only 6% of all individual
mRNA identified in these spores. Thus, 94% of mRNA participates in the generation of
proteins that will affect the germination of the whole spore [94,125]. The close relatives of
B. subtilis, B. cereus, Bacillus anthracis, and Bacillus thuringiensis Al Hakam, as well as the
spores of Bacillus megaterium and Clostridium difficile, lack several nucleotide biosynthetic
enzymes, which are synthesized only at defined times in spore outgrowth [1,126–128].

The 60 most abundant mRNA in all five Bacillus species transcribed in the devel-
oping spore were found only in dormant species. Sigma E/K-dependent transcripts in
spores might arise from weak–dependent transcription in the forespore of some of these
genes [129]. A possibility could lie in the connection between the mother cell and the
forespore, termed a feeding tube in the cytoplasm [124,130–133], which serves the mother
cell and transfers small molecules, such as ATP and amino acids, into the developing spore.
mRNA or mRNA fragments also move from the mother cell into the forespore via this
feeding tube [134]. The precise time in sporulation at which the feeding tube closes occurs
late in forespore development. Developing spores cannot make ribonucleotides, amino
acids, or ATP, in that at least several TCA cycle enzymes are absent [1,126,134].

In referring to the structural assembly of the multilayered spore of the genus Bacil-
lus, microscopy technology advancements permitted us to approach the spore structure
assembly [135]. The structure assembly of the spore coat is accompanied by the synthesis
of proteins that contribute to the multilayered structure. These proteins exert a strong influ-
ence on the core protection of the endospore, the maintenance of spore-core dehydration
and dormancy, and survival in the environment, distribution, and conferring germina-
tion [127,136–139]. The cortex is synthesized within the intermembrane space surrounding
the forespore after the engulfment stage during sporulation [123,124,140]. The proteins
for cortex synthesis are produced in both the forespore and the mother-cell compartments.
Peptidoglycan, lipids, and proteins (GerPA, GerP) (cortex lytic enzymes) form part of the
outer coat, the inner coat, and the cortex, playing a structural and biochemical function.
For example, in B. cereus, it has been shown that six GerP proteins share proximity with
cortex–lytic enzymes in the inner coat [135].

3.1. Sporulation Program in B. thuringiensis

Recent work on B. thuringiensis sporulation has revealed the participation of several
transcriptional factors. These factors determine the fate of vegetative cells in terms of
sporulation, crystal formation, and germination [53–55,141–143]. As mentioned previously,
sporulation in B. thuringiensis is highly conserved among the members of the genus Bacillus
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(B. subtlis, B. cereus). Indeed, knowledge of the sporulation program has been extrapolated
from the model organism of the genus Bacillus, B. subtilis, and B. cereus [135]. The initi-
ation of B. thuringiensis sporulation is controlled by the gradual increase in the activity
of the master regulator Spo0A. This regulator is phosphorylated by the multicomponent
phosphorelay system [55,121]. This system is usually affected by two negative-regulatory
mechanisms: The Rap phosphatases involved in the first mechanism, active, and regulated
by peptides derived from Phr proteins and followed by an export–import maturation
process [55]. The second negative mechanism involves the Spo0E-P -B, -E, and -H) family
of proteins, Spo0A-specific phosphatases, and small proteins (ranging between 50 and
90 amino acids), which share the conserved motif SQELD [55,121].

The transcription factor CpcR positively regulates a spo0E family gene, and variations
in this gene expression modulate the production of spores in B. thuringiensis. Thus, there
is a correlation between cpcr gene expression and sporulation. Indeed, one question to be
analyzed is whether CpcR interacts with the network of the sporulation program to control
cell differentiation [54,55,121]. Moreover, Spo0A activity impairs the presence of the cpcR in
the LM1212 strain (double spore-forming population and crystal production). Furthermore,
a putative phosphatase of the Spo0E family dephosphorylated and phosphorylated Spo0A-
Spo0A-P [54,55,121]. This molecular strategy employed by Bt to control sporulation as
a cell differentiation process aimed to ensure its survival in the environment and the
host [55] (Figure 1A,B). Moreover, the crosstalk between the set of sigma factors (controlling
spoVa genes) and the SPoVA proteins during the sporulation of Bacillus thuringiensis is
concomitant with parasporal crystal formation [119]. Several studies determine which of
these talk to which. In particular, mutants in the set of genes involved have demonstrated
that the sigma factors (ơF, ơE) play a role in forespore engulfment (stage 3). Mutants in
the gene spots controlled by sigma factor (ơH) are affected in terms of the efficiency of
sporulation and polar septum formation (stage 2) [112,113,144–146].

The Sporulation Mechanism in B. thuringiensis, a Multistep Process

(1) Initiation of sporulation by the Rap-Phr system; (2) Commitment to sporulation
regulated by the phosphorylation state of the major response regulator Spo0A [53,54,56];
(3) The different signals, such as nutritional deprivation, recognized by sporulation ki-
nases [147]; (4) These kinases phosphorylate Spo0F, which is used as a substrate by the
phosphotransferase Spo0B to phosphorylate Spo0A [88]; (5) Response regulator aspartate
phosphatases (Rap) inhibit this signal transduction pathway by dephosphorylating the
Spo0F-P response regulator [90]; (6) Rap protein activity inhibited by its related Phr pep-
tide, and, (7) The mature Phr peptide of five, six, or seven amino acids [92,120,145,148]
translated into a premature form that needs to be secreted, processed, and re-imported by
oligopeptide permeases in order to be active [36,92,93,147].

Differences in the molecular mechanism of the cell’s fate affect the distribution of
the SPoVA proteins in sporulating bacteria (Figure 1B). Recent studies employing double
mutants and genomic studies reported that sporulating proteins are distributed according
to their function and to the host environment [83,84]. The differences in the numbers
of homologous genes lead to differences in the role of the spoVS genes in the B. cereus
group and in B. subtilis. The spoVS gene found in B. thuringiensis, that is, two homologous
genes spoVS1, and spoVS2, are both conserved in B. cereus [119]. Their expression is
dependent on sigma factor H (ơH). Mutants in B. thuringiensis HD (∆spoVS1) exhibited
effects on morphological changes during sporulation [121,145], which include delay in
sporulation efficiency, the formation of polar septa, and spore release. However, the
mutants also failed to complete engulfment in some cells and demonstrated disporic
septa [119]. Septal thinning and membrane migration play a role in forespore engulfment.
The mutants also induced the decreased production of the parasporal crystal Cry1Ac [119].
Several molecular components are involved. For example, a sporulation-specific cwlC gene
that encodes an N-acetyl muramyl-alanine amidase characterized in the B. thuringiensis
subsp. israelensis (Bti) strain Bt-59. CwlC was the only cell-wall hydrolase in Bti found to
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contain both MurNAc-LAA and Amidase 02C domains [149]. Moreover, and according
to transcriptional analyses, cwlC was expressed at the late sporulation stage and was
controlled by SigK. In addition, two other cell-wall hydrolase genes were identified with
high expression levels, e.g., the cwlB and cwlE genes controlled by SigK. In contrast, another
hydrolase encoded by the cwlF gene is not under the control of the SigK factor; however,
this gene is plasmid-encoded [149]. Another molecular component is SpoIIID, a small,
sequence-specific DNA-binding protein that can direct the transcription of many genes,
and it affects spore formation in B. subtilis and B. thuringiensis. The SpoIIID mutant strain
exhibited no mother-cell lysis in the Schaeffer sporulation medium (SSM), but did in Luria-
Bertani (LB) medium. The deletion of spoIIID decreased crystal protein production in
HD73. Furthermore, SpoIIID positively regulated the sigK gene, while sigma factor K (σK)
negatively regulated the expression of sigE [150].

On the other hand, during parasporal crystal formation, the genes cry1A (Bravo et al.,
1996) [145], cry4A [151], cry8E [152], and cry11A are controlled by ơE or ơK [147,153]. The
sporulating-specific transcription factors, regulating toxins such as Spo9A, can positively
regulate cry1Ac [146,154]. Thanks to the progressive advances in genomics, it has been
possible to determine the differences in the functions of sporulation-related genes and
non-sporulating genes in the genus Bacillus, including B. cereus, and B. subtilis [35,36,154]. B.
thuringiensis possesses the PlcR regulon linked to endotoxin production [80]. Bt Cry toxins
are considered nonpathogenic in humans, while Cyt (cytolytic) proteins cause damage
to mammalian cells [155]. Cry toxins represent nearly 20–30% of the cell’s dry weight.
During sporulation, crystal proteins are localized on the spore surface, decreasing spore
resistance, but increasing the insecticidal properties of the crystals [156]. The expression of
the protoxin gene is controlled by sporulation-dependent promoters. All of the protoxins in
B. thuringiensis subsp. israelensis and other genes or unknown functions encoded in a large
plasmid (128 kb) [143,157]. Transcription depends on the mother cell at the middle stages
of sporulation, mostly transcribed from the promoter cry4A-P1 and under the control of
sigma 35, which is highly homologous and functions similarly in B. subtilis [153]. Cry
(crystal), and Cyt (cytolytic) toxins are synthesized during sporulation and assembled into
one or more crystalline parasporal bodies [158–160]. Several studies on B. thuringiensis
subsp. kurstaki (HD1) has shown that the three Cry1A proteins co-crystallize to form a
single bipyramidal crystal [161]. Even more so, during sporulation, the Cry2A inclusion
assembles with and is partially embedded in the short axis of the bipyramidal crystal [162].
Remarkably, in mosquitocidal isolates of B thuringiensis, parasporal- body structures exhibit
greater complexity [163–165]. Recent works have described Cry and Cyt inclusions as
being bound together by a peripheral multilaminate fibrous matrix of unknown compo-
sition [110,117,160]. Therefore, there is a coordination of the synthesis and assembly of
several protoxins and their association with the parasporal-body fibrous matrix during the
synthesis of other proteins of the plasmid, suggesting that the latter are in the parasporal
body [115,116,118,158–160]. Moreover, the genes ssrSA and ssrSB in the same operon are
co-transcribed as a precursor, processed by specific ribonucleases to form mature 6S-1
and 6S-2 RNA. These non-coding RNA play a role in sporulation and parasporal crystal
formation because the deletion of these genes inhibited the growth of B. thuringiensis in the
stationary phase [86,96–99,102]. In the soil, Bt Cry toxins on the spore surface are protected
by the exosporium. In the midgut, they are exposed and available for binding to the insect
receptors [41,43,47,119]. Furthermore, studies on the Bacillus anthracis group (B. cereus
and B. thuringiensis) [114] have shown that BclA, EsSY, and ExSFA are protein of the basal
layer of the exosporium (the outermost external layer), serving as protection, host targeting,
and dissemination) (Figure 1B). The underlying molecular mechanisms through which Cry
and Cyt proteins are targeted to the parasporal-body matrix or the manner in which the
structural integrity of this matrix is maintained is an issue that remains to be defined.
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3.2. Routing the Regulatory Metabolism at Transcriptional and Translational Level for Sporulation
and Insecticidal Crystal Protein Synthesis (ICPs) Production

To the myriad associated proteins produced for sporulation, high expression level of
genes is required for insecticidal crystal proteins synthesis (ICPs). Moreover, sporulation
and ICPs are energy-consuming, and require higher expression levels of genes to perform
these biological processes. At this point, in the CT-43 strain chromosome, the metabolism
of amino acid, carbon, and energy resources are in operons under systematic and regu-
lated coordination at a transcriptional and translational level for routing the metabolism
for sporulation and ICPs synthesis [35,36]. Thus, genes organized in operons and genes
were either induced or up-regulated in response to amino acid starvation during sporu-
lation. Thus, for the ICPs synthesis, a provision or supply of amino acids are necessary
and a prerequisite for crystal protein production. More than 300 genes are involved in
the aminoacid metabolism (KEGG base data). Previous isotopic work reported that 80%
of amino acids for ICP synthesis came from protein turnover [166]. In B. thuringiensis,
the amino acids are encoded in genes that conform to different operons, carrying thus
complete biosynthetic pathways for the most common amino acids (n = 20). Interestingly,
radioisotopic experiments have shown that amino acid supply for sporulation and ICP
synthesis comes from protein recycling. A set of proteases, ATP proteases, regulatory pro-
teins are transcriptionally up-regulated (Figure 2) and translational up or downregulated,
which allow protein recycling to meet amino acid requirements during sporulation: a set of
proteases (proteases, peptidases, and some ATP-dependent proteases) with high expression
levels rapidly degrade many abnormal polypeptides. Other proteases exerting proteolysis
functions are induced or up-regulated at the transcriptional level YabG (sporulation-specific
proteases), CH1854 (intracellular serine protease), and CH3928 (serine protease), NprB
(bacillolysin), CalY (camelysin), thermitase (thermostable serine protease), and Vpr (a
high-molecular-mass minor extracellular protease) [167,168].
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acid transport, carbon supply, carbohydrate transport, and energy generation) at transcriptional
(fold-up/down) and translational levels (amount of protein). How the different nutrient sources
are routed and regulated for cell growth requires high expression levels of genes. At 7 to 8 h, many
genes encoding proteases are induced, and they have functions such as transport and carbohydrate
conversion for energy supply. While at 13 and 22 h, some other proteins start to increase and decrease
other proteins required for the subsequent step in sporulation and crystal formation. The routing
of the regulatory metabolism is quite complex. It is an up and down fold regulation as well as an
increase-decrease production of proteins that successfully each cell growth accomplish this task
efficiently. It seems that B. thuringiensis has evolved strategies to save energy and to profit from
external nutrient sources [35,36].

Regulatory proteins control protein quality and regulate many biological processes [169,170].
Moreover, these proteins provide a large number of amino acids. In this way, protein recy-
cling would be the source of amino acids during sporulation (Figure 2). Studies in the CT-43
strains using RNA-seq and bioinformatics have revealed that during nutrient starvation,
genes and operons are induced and upregulated [171]. However, when the nutrient is rich,
cells store intracellular (PHB) and extracellular (Acetoin) carbon molecules recycled un-
der nutrient-depletion conditions. Indeed, some low-quality carbons as monosaccharides
and disaccharides remained unused during exponential growth and fully utilized during
sporulation and ICP synthesis.

Carbon and energy requirements Bacillus have evolved strategies to store and supply
carbon and energy to carry sporulation and ICPs. Among these strategies for carbon supply
are production and PHB reuse. PHB is produced as an intracellular carbon and energy
storage substance in bacteria [172,173], and found a linear correlation between the final
ICP and PHB concentration [172]. In the experiments performed by Wang et al., 2013 [36]
with the CT-43 strain, they found that the intracellular PHB level started to increase rapidly,
reaching a maximum level at 17 h, followed by a rapid decrease. PHB granules were visible
by phase contrast microscope in some sporulating cells even at 15 h. Moreover, studies us-
ing RNA-seq [36] showed that most PHB synthesis-associated genes were highly expressed
at 7 and 9 h and drastically reduced expression levels at 13 h. Meanwhile, PHB degradation-
associated genes such as pcaD (phaZ), scoT, and phbA1 increased at 13 h. At the translational
level, PhbB protein decreased production at 13 h, whereas PhbA, PhbB, and PhaC dramati-
cally down-regulated at 22 h. Conversely, the proteins associated with the PNB degradation
pathway, the protein PcaD (PhaZ), increased at 13 h. Of relevance is that PhaP and PhaQ
involved in the assembly and disassembly of PHB granules maintained high-level expres-
sion at both transcriptional and translational (Figure 2). These studies indicate that the
PHB regulatory metabolism (synthesis and degradation) at these levels play a role as an
important carbon source in sporulation and parasporal crystal formation. Another potential
alternative for carbon sources is the Pentose Phosphate (PP) shunt. All the participating
enzymes of this pathway were identified by iTRAQ [36], except Zwf, glucose-6-phosphate
1-dehydrogenase) but remained almost unchanged during sporulation, strengthening the
suggestion that the PP pathway is not involved at all in providing the reducing power
(NADPH) and metabolic intermediates involved in many biosynthetic processes. In the PP
pathway, there are three alternatives or routes that could be involved during sporulation
and ICP synthesis. The predominant route to arrive at the nodal point is gluconate-6p
is: (1) glucose converted into glucose-6p; (2) glucose 6p is converted into Glucono-1, 5-
lactone-6p by Zwf; and (3) the intermediate further transformed into gluconate-6p by
6-phosphogluconolactonase (CH3298). An alternative route is for glucose to be converted
into gluconate by Gdh (glucose 1-dehydrogenase), and gluconate catalyzed into gluconate-
6p by GntK (gluconokinase). The key limiting enzymes, Zwf and Gdh in both routes
were not detected during the exponential growth phase (7 h) at both the transcriptional
and translational levels [36]. However, the gene zwf was slightly induced at 9 h and then
up-regulated at 13 h, while the gene gdh was initially induced at 13 h at the transcriptional
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level. This data would imply a very significant regulatory mechanism of the PP pathway
that could have a role as alternatives strategies during biological processes as the ones
mentioned above. Interestingly, when CT-43 cells were grown in a GYS medium containing
yeast extract, they followed a third route on the gnt operon that participates in gluconate
metabolism. This gnt operon (CH2189–2191) is composed of gntP (gluconate permease),
gntK, and gntZ/gndA (6-phosphogluconate dehydrogenase), and it lacks the transcriptional
regulator, which expression is comparable to the negative regulator gntR described in B.
subtilis [174]. The data of RNA-seq obtained by Wang et al., 2013 showed that the gnt
operon expression level reached a maximum at seven hours and then gradually decreased.
Furthermore, for bacteria, direct uptake of substances from the extracellular environment
might be the most rapid and metabolically economical pathway. Therefore, extracellular
gluconate is likely transported into the cells directly by GntP and converted into gluconate-
6p by GntK, with gluconate-6p further catalyzed into ribulose-5p by GntZ/GndA, leading,
to the repression of the genes zwf (glucose-6-phosphate 1-dehydrogenase) and gdh (glucose
1-dehydrogenase). Therefore, glucose does not enter the PP pathway when the extracellular
environment contains gluconate, which might explain why 100% glucose catabolism was
through the EMP pathway. The contribution of the PP pathway was still 5% in a glucose-
glutamate-salts medium [175]. The low-quality carbon sources such as monosaccharides,
disaccharides -glucosamine from chitin degradation and deacetylation, and glucose form
lichenin cleavage [176,177] participate in energy metabolism and amino acid biosynthesis
(particularly the branched-chain amino acids)(BCAAs) during sporulation. Furthermore,
glucose and other monosaccharides (low-quality carbon sources) provided by the GYS
medium could be exhausted during the exponential growth phase. They can enter the EMP
pathway during sporulation to produce a large amount of pyruvate, which is also used
for the high-level synthesis of dipicolinic acid (approx 25% of sporal core dry weight), a
molecular component that plays a role in spore germination and resistance [178] (Figure 2).
Fatty acids, b-oxidation, and the C2 and C4 compounds, the PHB (p-hydroxy-b-butyric
acid) assembly and disassembly (PHB depolymerase) [179], (7) the intermediate of the
TCA cycle (tricarboxylic acid), as acetyl-CoA utilized and remarkably upregulated during
sporulation and ICP synthesis.

The TCA Cycle—Of relevance is that any mutant defective in the first three enzymes
of the TCA cycle fails to express early sporulation genes suggesting that the activities
of these enzymes are critical for sporulation [180,181]. On the contrary, a-ketoglutarate
dehydrogenase, which catalyzes the fourth step of the TCA cycle, is not essential [182].
Remarkably, during sporulation, a considerable amount of acetyl-CoA is generated by
pyruvate dehydrogenation, fatty acid b-oxidation, and the reuse of acetoin and PHB. It
seems that acetyl-CoA would mainly flow into the TCA cycle to yield energy. The data
reported by Wang et al., 2013 [36] along with other studies, have speculated that the TCA
cycle is significantly modified or supplemented during sporulation via:

The glyoxylate shunt bypasses a portion of the TCA cycle to convert isocitrate to
malate [183]. At transcriptional level, two glyoxylate shunt-specific genes; aceA (isocitrate
lyase) and aceB (malate synthase) were up-regulated at 13 h. While at translational level,
AceB production increased at 13 h and 22 h, respectively. This result implies that the
glyoxylate shunt became more active during sporulation (Figure 2).

The γ-aminobutyric acid (GABA) shunt is an additional routing for the TCA cycle
and is correlated with spore and parasporal crystal formation in B-thuringiensis [182,184].
GABA synthesis is through glutamate decarboxylation catalyzed by glutamate decarboxy-
lase. Remarkably the sole glutamate decarboxylase GadB (CH2716) identified in CT-43 was
not expressed at any phase at either the mRNA or protein level. Indeed GABA produc-
tion was relatively weak in Bacillus strains [185]. However, the mRNA of GABA-specific
permease gabP increased at 13 h, in agreement with an observation that gabP activated dur-
ing nitrogen-limited growth [185]. Moreover, the GABA degradation-associated enzymes
GabD (succinate-semialdehyde dehydrogenase) and GabT (4-aminobutyrate aminotrans-
ferase) were transcriptionally and translational up-regulated at 13 h, respectively. These
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results suggest GABA metabolism became more active during sporulation and that the
utilized GABA might mainly come from the extracellular environment. Furthermore, the
GABA shunt and the methyl citrate cycle are interconnected through a common node,
the succinate, leading, thus, to accurate PHB reuse. Indeed, SucC and Suc D proteins
were slightly decreased at 13 h, possibly implying that a significant amount of succinate
is converted into succinyl-CoA during sporulation. Data from B cereus and with CT-43
strains indicated a significant increase in the levels of enzymes and cytochromes involved in
energy production via the electron transport system during the transition from vegetative
cells to spores [186,187]. Thus, at the transcriptional level, two cytochrome P450 genes [186],
cypA and cypC, were markedly up-regulated at 13 h, and a dNADPH-cytochrome P450
reductase gene cypD induced at 13 h. (Figure 2).

Oxidative phosphorylation and energy generation through the FoF1-ATPase (ATP syn-
thase) complex which catalyzes ATP synthesis from ADP and Pi, driven by the proton gradient
generated by the respiratory chain, and organized in the operon atplBEFHAGDC [187–189].
The atpHAGDC encodes the γ, α, β, and ε subunits of the F1 portion, while the atpBEF
operon encodes the A, C, and B subunits of the Fo portion. The atpl encodes a protein with
an unknown function. The genes of these operons are regulated at the transcriptional and
translational levels [36]. Thus, the atpC gene was down-regulated by more than 20-fold,
and the others were decreased by about 2-5 fold during sporulation. Besides, increased
expression of the enzymes that form part of Complex I, II, and III (Figure 2). In contrast, at
the translational level, the g, a, b, and e subunits of the F1 portion and the C and B subunits
of the Fo portion were all maintained at similar levels at 13 h and increased by more than
1.8 fold at 22 h. However, the subunit of the Fo portion failed to be quantified. These
data highlight the high energy requirements of spore and parasporal crystal formation.
Indeed, as outlined in Figure 2, there is a subtle regulation of the metabolism (amino acids,
carbon, and energy) at the transcriptional, translational level that allows Bt under nutrient
depletion, starvation can perform biological processes such as sporulation, ICP synthesis,
and especially those involved in the dipicolinic acid, a molecular component of the spore
core [35,36] (Figure 2).

4. The General Spore Germination Program in the Genus Bacillus

In spore germination, molecular and morphogenetic changes are carried out as
crosstalk among signals, germinant nutrients, and spore components in the committed
endospore in order to awaken or break dormancy [190]. For an endospore, the fate and the
decision to germinate encodes in the dormant spore. The program of spore germination
refers to the multistep mechanism through which spores return to life, an awakening
process that enables them to reenter into metabolic activity [190–194]. The knowledge
of the components and signals in spore germination derives from studies of the model
organism Bacillus subtilis [11,111,195,196]. However, there are current efforts to update and
focus on other members of the genus Bacillus, especially those that constitute a problem in
pathogenesis, health, agriculture, and in the food industry as well [39,194,197].

Which are the signals that initiate the process of awakening the dormant spore? What is
known is that external signals (germinants, small molecules) that sense germination-specific
proteins (GR)-like receptors localize in the outer and the inner coat of the spore [127,197–202].
The phenotypical characteristic of the spore-germination stage is considered a weak stage
or spot in the life cycle of Bacilli species. During this stage, the spores become susceptible to
physical, chemical, and environmental conditions, starting from the inner membrane coat
of the spore, to render these accessible to nutrients of low molecular weight, ions, nutri-
ents, Dodecylamine, and water, in order to flow through the core cortex [195,198,203–205].
Specifically, in vivo spore germination in B.thuringiensis is carried out and favored under
the alkaline and midgut-larval environment [140–142]. In vitro germination is activated by
germinants (Dodecylamine, amino acids) in the culture medium and temperature growth
at 25–27 ◦C in the medium [143,148,150,198]. The physical factors, such as temperature
and pH, can aid the proteins of the coat’s inner membrane (IM) in undergoing the confor-
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mational changes that leave them in the appropriate conformation for interactions. This
set of proteins comprises the so-called germinosome, including the GR proteins (partic-
ularly GERD), SpoVA proteins. GerP proteins favored the nutrient’s access to the inner
membrane [202,206–212]. SpoVA spore components are present during sporulation and
germination events [193]. Moreover, to awaken the dormant endospore is to favor inner
membrane (IM) structure permeability through the expression of the proteins (SpoVA) that
form the channels (seven in B.subtilis spores) [203,213] for the movement, passage, and
release of monovalent cations, including H+, K+, and Na+ CaDPA (sodium calcium dipicol-
inic acid) [203,210,214–218]. These are proteins that take part in the release of DPA through
channels encoded in one or more operons in all spore-forming bacilli [203,214–216,219,220].
In the particular case of B. subtilis, it is a heptacistronic operon. The mutations in the ger P
locus cause a reduction in the permeability of the spore coat to germinant molecules [221].
In general, at least three proteins are present: SpoVAC; SpVAD, and SpoVAEb [193,222–224].
In B.thuringiensis, these proteins are organized as a biscistronic operon [225]. Once CaDPA
release is complete in stage I, it triggers entry into stage II. In this latter stage, the expression
and function of the molecular enzymatic machinery represented by the lytic transglyco-
sylases (CLE, CwlJ, and SleB) [203,226,227], inactive in the dormant spore and recognize
the muramic-δ-lactam modification present in the cortex. Furthermore, for in vitro spore
germination, enzymatic treatment with the lysozyme removes the outer membrane and
the spore-coat proteins. The concentration or amount of this enzyme is optimized to
avoid damage to the incipient germinant spore. The enzymatic treatment renders the
ions and nutrients permeable to the external and inner membranes, especially if they are
low-molecular-weight germinant inducers. The cortex–lytic enzymes (CLE, CWlj, and SleB)
should be present for the necessary cleavages and to permit the exchange of components
such as dipicolinic acid (DPA). CLE can degrade the large peptidoglycan cortex layer, fa-
voring the entry of ions and water, leading to spore-core swelling. Thus, the spore becomes
a growing cell with restored metabolic activity [198,203,204,228,229] (Figure 3).
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wake up, start: 1, Sensing of the nutrients (aminoacids, sugars) or external stimuli from the envi-
ronment or the host by the germinant receptor (GR), clustered in like germinosome (A, D, C, D, K)
Schem) in the IM or other molecular components (CWLJ) in the outer membrane; 2. Interaction and
cooperation between GRs, and a cooperation with SpoVA proteins; 3,Transmission downstream of
the external signals, 4, Activation of the release of dipicolinic acid (DPA), and 5, Initiation of the
germination process [37].

The general mechanism of spore germination can be outlined as follows:
(1) Germinant sensing; (2) Commitment to germinate; (3) Release of spore depot

of dipicolinic acid (DPA); (4) Hydrolysis of peptidoglycan cortex spores; (5) Spore-core
swelling and water uptake; (6) Cell-wall peptidoglycan remodeling, and (7) Restoration
of core protein and inner-spore membrane–lipid mobility. This mechanism resembles a
detailed general program for spore germination that is well characterized in B. subtilis, B.
anthracis, and B. cereus. In B. thuringiensis, the differences in the molecular components that
are involved in these processes are yet to be defined. One of the unsolved questions is re-
lated to the import and export of DPA and how the nutrients are sensed in the commitment
spore [194]. Furthermore, the evolution, conservation, and diversity in the machinery of
germination programs among the members of the genera Bacillus and Clostridium have
recently approximated by genome sequencing [193,230,231]. It would appear that DPA
is the master component whose movement determines the sporulation or germination
of a vegetative cell. Indeed, in a recent study using B. subtilis, it was suggested that the
subunits of the SpoVa proteins that form channels and cytoplasmic plugs play a role in the
efficiency of DPA import (sporulation) and export (germination) [37,38,135]. DPA transport
into the spores involves cycles of unplugging and then replugging the C-Eb membrane
channel. Nutrient detection during germination triggers DPA release by unplugging the
C-Eb [37,38,135] (Figure 3).

Detailed program for spore germination in which all of the molecular components
are outlined: (1) Activation. Nutrient germinant plus spores (minutes to hours). Lag
phase, and (2) Commitment (a major change in IM permeability and structure). GERP
proteins allow the access of nutrients into the inner membrane, low-molecular-weight, i.e.,
Dodecylamine, ions (H+, Na+, and K+). Channel formation by the multiple spore-specific
SpoVA) (n = 7) in Bacillus subtilis (Setlow and Christie., 2020; [127,198,230,232]; (3) Release of
pyridine-2, 6-dicarboxylic acid (dipicolinic acid [DPA]) chelated at 1:1 with divalent cations,
predominantly Calcium (Ca2+DPA) through the IM channels; (4) Enzymatic lysozyme-
mediated cleavage of the cortex, favoring permeability into small molecules in the inner
coat, triggering spore germination; (5) Stage I. All of the Ca2+ DPA is released by the CLE
cortex degradation, and this event leads to passage into stage II [208], and 6. Stage II cortex
degradation is complete. The germ-cell wall and the core take up water and expand. This
marks the initiation of germination, giving rise to growing cells and to the activation of
metabolic activity [195,224].

How is this program conducted? A strategy for success in the awakening of the spores
is to produce effective dynamic interaction between the sensor and the nutrients. The
termination “ome” refers to a set of clustered elements that performs an integrated function.
Therefore, in spore germination, there is recent evidence of the local clustering of receptors
in a germinosome in the IM of B. subtilis [233,234], and B. cereus [37,219]. Moreover, in
some points, B.thuringiensis form foci as a complex of germinant receptors (GR) known as
germinosomes [119,227,235–237]. These include the SpoVA proteins, involved in the uptake
of Ca2+-dipicolinic acid into the forespore during sporulation, which are also responsible
for its release during germination. Lytic enzymes SleB and CwlJ, found in bacilli and
in some clostridia, this enzymes hydrolyze the spore cortex; other clostridia use SleC
for this purpose. The diversity in the machinery of germination programs conformed
by proteins. SpoVA, enzymatic, and the GR between the genera Bacillus and Clostridium
have been approached by means of genome sequencing [193]. To understand how the
germinated receptors (GR) integrate and transmit the downstream signal to awaken the
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dormant spores, one alternative is that receptors cluster in the germinosome to allow
interaction with each other and with SPoVA proteins at the inner membrane (IM). Thus,
germinants reach the GR after passing the outer membrane and interact specifically with
GR, which respond to this and transmit to the SPoVA proteins [238] (Figure 3). Despite
this, some germinants can interact directly with SPoVA independently of the GR, such
as Dodecylamine (DDA) (Figure 3). In the cooperative interactions between the GR and
the nutrients, the subunit secondary structure of the GR plays a role. For example, it is
known that GR are commonly formed of A, B, and C subunits, encoded by tricistronic
ger operons, as is the case for B. subtilis. In the spores of B. subtilis, GerA is the major
GR and it has the following three subunits: GerAA; GerAB, and GerAC. The L-alanine
activation of GerA requires all three subunits. Prediction studies have revealed that the
secondary structure of GerAB is an alpha-helical transmembrane protein that can form
water channels. Furthermore, molecular simulation studies have revealed that L-alanine
can bind transiently to specific sites on GerAB [234]. In addition, the B. licheniformis
genome contains the gerA family operons gerA, ynd, and gerK, in contrast to the ABC (D)
organization, which characterizes the gerA operons of many Bacillus species. Indeed, B.
licheniformis genomes contain a pentacistronic ynd operon, the yndD, yndE3, yndE2, yndF1,
and yndE1 genes, encoding A, B, B, C, and B GR subunits, respectively (subscripts indicate
paralogs). In contrast to the B subunits of Ynd, the B subunit of GerA was essential for
amino-acid-induced germination [220,235,239,240]. Therefore, in addition to the operon
organization of the GR receptors, dynamic structural studies have provided novel insights
into the role of individual GR subunits involved in the cooperative interaction among GR,
in triggering spore germination [220,235,239,240] (Figure 3). As outlined in Figure 1A,B,
dormant spores can awake in several ways: (1) by external stimuli, external environmental
signals; (2) in the host by nutrients; (3) by germinants receptors (GR) present in the inner
membrane or in the outer membrane; (4) by other components such as CwLJ, or directly
signal through SPoVA (independently of GR). In addition, the cooperative interactions of
the GR (A, B, C, D), or in some cases, Ynd and GerK components which drive signalization
with SPoVAC. This activation can initiate germination by release of DPA through the SPoVA
channel, which is a central locus of a set of proteins, key in the import and export of DPA
(Figure 3).

The Molecular Components of the Germination of B. thuringiensis

The molecular components of the germination of B. thuringiensis that are known are:
(1) The enzyme Alanine racemase (AlrA), encoded by the gene homologous to the major
component of the exosporium of B. cereus spores, alrA, which plays a crucial role in moderat-
ing the germination rate of B. thuringiensis spores [235]. Converted D-alanine into L-alanine,
and this in turn stimulated spore germination in B. thuringiensis. This gene, cloned from
B.thuringiensis subsp. kurstaki [235], is transcribed only in the sporulating cells. (2) The CLE
and spore cortex–lytic enzymes are essential for germination in bacilli. A homolog of the
cwlJ gene involved in spore germination was isolated from B.thuringiensis. The deduced
product of this gene exhibits striking sequence similarity to the lytic enzyme, CwlJ of B.
subtilis. Another open reading frame (ORF), 27 bp downstream of cwlJ, which deduced the
product, shows high similarity to the YwdL of B. subtilis. Reverse transcription-polymerase-
chain reaction (RT-PCR analysis indicated that cwlJ and ywdL formed a bicistronic operon
in B. thuringiensis [225]. In addition, a gene-encoding spore, the cortex–lytic enzyme, des-
ignated sleB, was cloned from B. thuringiensis. The disruption of sleB did not affect the
vegetative growth of B. thuringiensis. However, the fall in optical density (OD) (600 nm) in
the mutant spores was much slower than in the wild-type strain during the spore germina-
tion induced by L-alanine [236] (3). The spore germination of Bacillus can start by sensing
germinants such as L-alanine and by binding to specific receptors. The GerA receptor
responds to L-alanine in B. subtilis. A homologous gerA operon of B. subtilis was isolated
from B. thuringiensis subsp. kurstaki. Disruption of the gerA operon led to blockage of the
L-alanine-initiated germination pathway and revealed a delayed inosine-induced germi-
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nation response. The germination rate of the gerA complementary- strain spore deriving
from the introduction of the gerA operon into the disruption mutant was even faster than
that of the wild-type-strain spore [237]. Moreover, one polysaccharide deacetylase gene
was cloned from B. thuringiensis and was designated pdaA. Disruption of pdaA did not
affect vegetative growth and sporulation, but did affect spore germination [236]. (4) gerM
is a very conservative gene of 4.5 kilobase (kb). A DNA fragment cloned from the partial
DNA library of B. thuringiensis subsp. kurstaki 1.175. Sequence analysis showed that the
fragment contains one complete ORF that encodes a 349-amino- acid (aa) protein, which
has high homology with the GerM protein from B. subtilis. (5) The function of the gerM
gene in Bt spores was analyzed utilizing gene disruption. The resulting germ mutant grows,
sporulates and germinates slower than wild-type Bt spores in the presence of L-alanine or
inosine. This result suggested that gerM expression is required for the normal germination
initiated by L-alanine or inosine in B. thuringiensis [119,236,237] (Figure 3).

5. Implication of the Knowledge of Sporulation Structural Assembly and Germination
in the Soil Bacterium B. thuringiensis

The stable and resistant nature of spores and the possibility of germinating and grow-
ing in a gut environment render them suitable for treatment in the form of probiotics and
as vehicles for vaccine and drug delivery. Spore treatments have shown great promise in
animal studies. However, human trials require going further. Nonetheless, spores might
open the door to safe, effective, and easy-to-administer therapeutics [39,85,241]. It is pivotal
to elucidate and understand the life cycle of spore-forming bacteria, especially those bacilli
that threaten agriculture, the food industry, and health care [18,240,242]. Bt has become a
promising and potential new avenue of alternatives against the biological control of insects
and the application of biotechnology biomedicine. Furthermore, Bacillus thuringiensis is
viewed as a biofactory for the production of proteins, but also of other products for biore-
mediation and for improvement as bioinsecticides. Moreover, arasporal delta endotoxins
are highly specific against different orders of insects. However, Cyt proteins can exert a
cytopathic effect on mammalian cells, specifically those changed by some types of cancer.
This double sword of Bt marked the biotechnological success of B. thuringiensis; due to the
versatility of Bt, great interest has emerged during the last two decades [3,4,42,119]. Work in
this area ranges from basic research (mechanism of toxicity in insects) to applied science (the
genetic engineering of economic crops with cry genes), the assembly of proteins for crystal
formation (structural biology), and nanotechnology (drug-vehicle delivery or vehicles of
subunit vaccines) [243–245].Furthermore, B. thuringiensis can produce floating biofilms
with a ring and a pellicle [246]. During sporulation, the spores remaining in the biofilm ring
are of great utility for the food industry, because they confer spore resistance on washing
and cleaning procedures. The spores can restart a new biofilm when food production has
resumed [103]. A recent work [247] reveals improvement in the outdoor use of Cry34Aa
toxins (effective against Diptera) as encapsulated proteins in a polyhedral microcrystal toxic
to Bombyx mori cypovirus. This system provides stability and long-term protein activity
under hostile environmental and physical conditions and UV irradiation [247]. Bt cry genes
have characteristics to enhance resistance to insect pests in genetically modified crops, the
application of cry genes in plant genetic engineering, and the effect of the Bt against differ-
ent species of invertebrates (nematodes, ticks, mites). New strains have been identified of
Bt that produce Cyt2BA against Bradysia difformis (pests in mushroom production) [4,248].
Another examples of this is the B. thuringiensis strains GBA46 and NMTD81, and the strain
FZB42, Of toxic against the phytopathogen Aphelenchoides besseyi and cause severe damage
to various crops of plants and vegetables [37,71,239]. Of relevance is that the progress and
the development of novel and improved biological technologies for the bioremediation
of heavy metals and other pollutants [249,250], B. thuringiensis is a model for hijacking the
process of the synthesis of crystal proteins in order to generate diverse proteins with appli-
cations in biotechnology and medicine (nanoparticle delivery system) [251]. B. thuringiensis
is a potential and suitable cell factory for different novel, valuable bioproducts [249–251].
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6. Conclusions and Remarks

The majority of studies regarding B. thuringiensis centered on elucidating the mech-
anism of action of the Cry proteins. Bt Cry toxins as bioinsecticides. However, in light
of the emergence of several worthwhile studies on the Bacillus model B. subtilis, followed
closely by that of B. cereus, the molecular biology of B. thuringiensis (Bt) sporulation, struc-
tural assembly, and germination has approximated it. As reviewed herein, the molecular
machinery involved in the morphological and cytological processes is conserved in the
genus Bacillus, which belongs to the phylum Firmicutes. Furthermore and remarkably,
the metabolic regulation at transcriptional and translational levels of the sporulation and
crystal proteins formation. Despite several differential spatio-temporal differences in gene
expression and in sigma transcriptional and protein patterns, this morphological complex
differentiation process reveals a common cell fate, preservation, and survival under nu-
trient limitation and harsh environmental conditions. A striking feature of the infectious
life cycle of B. thuringiensis resides in the concomitant expression and production of the
crystalline-delta endotoxins (Cry proteins), a strategy conferred on Bt for survival and
success in the environment (biological control) and the host. Furthermore, the molecular
co-evolution and molecular crosstalk in metabolism are maintained through the evolution
between Cry endotoxins and the set of receptors immersed in the insect midgut, thus
conferring an evolutive advantage for survival and success.
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