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Colorectal cancer is the third most common cancer worldwide with abysmal survival,
thus requiring novel therapy strategies. Numerous studies have frequently observed
infiltrating bacteria within the primary tumor tissues derived from patients. These studies
have implicated the relative abundance of these bacteria as a contributing factor in
tumor progression. Infiltrating bacteria are believed to be among the major drivers
of tumorigenesis, progression, and metastasis and, hence, promising targets for new
treatments. However, measuring their abundance directly remains challenging. One
potential approach is to use the unmapped reads of host whole genome sequencing
(hWGS) data, which previous studies have considered as contaminants and discarded.
Here, we developed rigorous bioinformatics and statistical procedures to identify
tumor-infiltrating bacteria associated with colorectal cancer from such whole genome
sequencing data. Our approach used the reads of whole genome sequencing data of
colon adenocarcinoma tissues not mapped to the human reference genome, including
unmapped paired-end read pairs and single-end reads, the mates of which were
mapped. We assembled the unmapped read pairs, remapped all those reads to the
collection of human microbiome reference, and then computed their relative abundance
of microbes by maximum likelihood (ML) estimation. We analyzed and compared
the relative abundance and diversity of infiltrating bacteria between primary tumor
tissues and associated normal blood samples. Our results showed that primary tumor
tissues contained far more diverse total infiltrating bacteria than normal blood samples.
The relative abundance of Bacteroides fragilis, Bacteroides dorei, and Fusobacterium
nucleatum was significantly higher in primary colorectal tumors. These three bacteria
were among the top ten microbes in the primary tumor tissues, yet were rarely found
in normal blood samples. As a validation step, most of these bacteria were also closely
associated with colorectal cancer in previous studies with alternative approaches. In
summary, our approach provides a new analytic technique for investigating the infiltrating
bacterial community within tumor tissues. Our novel cloud-based bioinformatics and
statistical pipelines to analyze the infiltrating bacteria in colorectal tumors using the
unmapped reads of whole genome sequences can be freely accessed from GitHub
at https://github.com/gutmicrobes/UMIB.git.

Keywords: unmapped reads, tumor tissue, colorectal cancer, infiltrating bacteria, maximum likelihood estimation

Frontiers in Genetics | www.frontiersin.org 1 March 2019 | Volume 10 | Article 213

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00213
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2019.00213
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00213&domain=pdf&date_stamp=2019-03-15
https://www.frontiersin.org/articles/10.3389/fgene.2019.00213/full
http://loop.frontiersin.org/people/698159/overview
http://loop.frontiersin.org/people/698171/overview
http://loop.frontiersin.org/people/662747/overview
https://github.com/gutmicrobes/UMIB.git
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00213 March 13, 2019 Time: 18:14 # 2

Guo et al. Inferring Bacterial Infiltration From hWGS Data

INTRODUCTION

Many microbes inhabit human tissues and bodily fluids, forming
a close symbiotic relationship with the host. The types, quantities,
distribution features, genomes, and pathogenic mechanisms of
human microbes vary greatly (Campo-Moreno et al., 2018).
Generally, the total number of microbes (approximately 100
trillion) found in the human body is 10 times more than
the number of human cells, and the number of genes they
encode is 100 times more than that by the human genome.
Those microbes play an important role in human health by
regulating our digestive, immune, respiratory, and nervous
system, and their dis-symbiosis has been associated with various
diseases (O’Hara and Shanahan, 2006), such as inflammatory
bowel disease (Norman et al., 2015), Crohn’s disease (Li et al.,
2012), viral hepatitis (Kostic et al., 2012), and colorectal cancer
(Littlejohn et al., 2016).

Using metagenomics approaches, researchers have found that
colorectal tumorigenesis is mediated by toxins produced and
secreted by the infiltrating bacteria that colonize the intestinal
surface and trigger tissue inflammation, inducing otherwise
normal cells to emit atypical signaling molecules. The whole
process leads to local inflammatory reaction and the infiltration
of innate immune cells, events which, in turn, accelerate tumor
development (Chung et al., 2018; Dejea et al., 2018). For example,
DNA damage may be induced in host cells owing to prolonged
exposure to these toxins, initiating tumorigenesis (Zhu, 2013).
Bacteria and their products can also facilitate viral infection
in host cells, thereby inducing cancer (Lax and Thomas, 2002;
Almand et al., 2017).

While direct experimental measurement of infiltrating
bacteria remains challenging, the unmapped reads derived from
host primary tumor tissue through whole genome sequencing
(hWGS) data could allow us to study the pathogenic process
involving microbes in colorectal cancer with in situ advantage
and no additional cost. In the past, unmapped reads were often
overlooked; however, recent studies have proved that they
contain crucial microbial information relevant to tumorigenesis
(Mangul et al., 2018). Nonetheless, as a consequence of the
extremely low abundance of microbial DNA in comparison to
host DNA, such research requires the development of rigorous
and robust bioinformatics and statistical procedures.

Our approach was built on a growing number of studies
measuring microbes in the biopsies of cancer patients via the
reanalysis of reads that were not mapped to the human reference
genome. Zhang et al. (2015) used MegaBlast to remap the
unmapped reads of whole genome sequences of 27 gastric
mucosal biopsies to microbial reference genomes, and they
verified a close association between Helicobacter pylori and gastric
tumors. Tang and Larsson (2017) conducted high-throughput
sequencing to analyze the RNA or DNA from tumor tissues
of patients with cervical adenocarcinoma and lymphoma and
remapped the unmapped reads to the complete viral reference
database to successfully detect known oncogenic viruses, as well
as identify new viral strains in those tumors. Loohuis et al.
(2018) studied 192 blood transcriptome samples of schizophrenic
patients, applied MetaPhlAn to analyze the bacteria using

unmapped reads, and identified Planctomycetes and Thermotogae
phyla closely associated with schizophrenia.

Evidence gathered from those studies has established the
rationale for reanalyzing microbes using unmapped reads as a
cost-effective approach to investigate the interaction between
microbes and disease progression. Accordingly, we herein report
a novel cloud-based bioinformatics and statistical pipelines
to analyze the infiltrating bacteria in colorectal tumors using
the unmapped reads of whole genome sequences. We used
SAMtools to extract the unmapped reads, PANDAseq to
perform quality control, followed by the assembly of paired-
end reads, as well as the use of Burrows-Wheeler Aligner
(BWA) for remapping to bacterial reference genomes, and
Genome Relative Abundance using Mixture Model theory
(GRAMMy) to estimate their relative abundance. By analyzing
the obtained relative abundance and diversity, we identified
differential infiltrating bacteria between primary tumor tissues
and associated normal blood samples.

MATERIALS AND METHODS

Our data were downloaded from The Cancer Genome Atlas
Colon Adenocarcinoma (TCGA-COAD) database, including
the BAM-formatted whole genome sequencing data of 51

FIGURE 1 | Flow chart showing the differential analysis of bacterial relative
abundance using whole genome sequencing data. Whole genome
sequencing BAM files are the result after mapping to the human reference
genome.
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paired primary colon adenocarcinoma tumor and normal blood
samples. Our bioinformatics pipeline was implemented using the
Seven Bridge Cancer Genomics cloud platform, including four
linked analytical components (SAMtools, PANDAseq, BWA, and
GRAMMy) with their Docker images pushed up to the cloud
platform. Figure 1 showed the flowchart of our approach for the
analysis of differentially abundant bacteria using whole genome
sequencing data. From the BAM files of the whole genome
sequence data, we extracted reads that were not mapped to the
human reference genome. Those reads were then mapped to a
collection of human microbiome reference genomes to estimate
the relative abundance of microbes.

Extracting Unmapped Reads
We aimed to extract all unmapped reads, including both full read
pairs (both ends of a read pair were unmapped) and single-end
unmapped reads (one read end was mapped, while the other end
was unmapped). Our bioinformatics procedures to extract such
unmapped reads were as follows:

(a) Full unmapped read pairs. We first assembled the paired-
ends sequencing reads and concatenated them into a longer
single read to achieve more accurate alignment results. We
extracted the full read pairs using the command “samtools
view -u -f 4 -F264” and exported them as FASTQ files,
followed by PANDAseq for assembling the paired reads.
Since the initial output of the FASTQ files did not conform
to the input format of PANDAseq, we wrote in-house
script to add “/1” and “/2” to the ends of the IDs of the
paired reads and then separated them into two FASTQ files
per sample for the forward and reverse read, respectively.
PANDAseq was then used to assemble the overlapping
reads and filter out low-quality reads, setting its threshold
as the default value of 0.6.

(b) Single-end unmapped read pairs. We extracted single-end
unmapped read pairs with the command “samtools view -u
-f 12 -F 256” and exported them as FASTA files.

The assembled full unmapped read pairs and the single-end
unmapped read pairs were combined to obtain the complete set
(FASTA files) of unmapped reads.

Mapping and Calculating the Relative
Abundance of Microbes
We used the Burrows-Wheeler Alignment tool (BWA) to
remap the complete set of unmapped reads obtained in
the previous step to the a collection of human microbial
genome references. Our reference collection was downloaded
from the NCBI human microbiome database: ftp://ftp.ncbi.
nlm.nih.gov/genomes/HUMAN_MICROBIOM/Bacteria. Those
reference genomes were sequenced, quality controlled and
assembled by the Human Microbiology Program (HMP) (Methé
et al., 2012) consortium. This reference collection contains
161 bacterial genus and it is also 519 of the most important
bacterial species in the human body, including more than 900
strains. The reference collection was pushed up to the Seven

Bridges Cancer Genomics cloud platform using the Cancer
Genomics Cloud Uploader.

Next, we used GRAMMy (Xia et al., 2011), a mixture modeling
and expectation- maximization algorithm-based maximum
likelihood (ML) estimation tool, to determine the relative
abundance of microbes. The tool overcomes the ambiguity of
mapping to different microbial reference sequences that occur as
a result of short read sequencing and a closely related reference
collection to estimate the relative abundance accurately.

Quality Control Post-abundance
Estimation
We eliminated samples presenting extremely low relative
abundance of all bacteria, except for Propionibacterium sp. We
suspected Propionibacterium sp. to be a major contaminating
species in both normal blood samples and primary tumor tissues
of colorectal cancer, averaged as 0.9313 and 0.7142, respectively.
The relative abundance of Propionibacterium sp. in normal
blood samples was, on average, higher than that in the primary
colorectal cancer tissues.

Because the amount of Propionibacterium sp. in both tumor
and normal samples was disproportionately large, we decided
to exclude its relative abundance from all analyzed samples
and renormalized relative abundance of other species. We
also excluded 5 primary tumor tissue samples and 15 normal
blood samples, the total unmapped reads counts of which were
less than five, presenting extremely low relative abundance of
infiltrating bacteria. Finally, our analysis was based on the

FIGURE 2 | Alpha diversity of bacteria in the normal blood samples and
primary tumor tissue samples. The violin plots show the alpha diversity of
infiltrating bacteria in the normal blood and primary tumor tissue samples. The
green color in the plot represents the normal blood samples, and the red color
in the plot represents the primary tumor tissue samples. The “∗∗∗” symbol
represents P-value < 0.001. Differential analysis was performed by Student’s
t-test (P = 1.27E–06).
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TABLE 1 | The most differentially abundant genera between tumor and normal
samples (Q-value < 0.05).

Genus P-value Q-value (adjusted FDR)

Bacteroides 4.50E−09 4.81E−07

Clostridium 0.000377316 0.005046606

Fusobacterium 7.63E−05 0.002040633

Streptococcus 0.00095632 0.007309021

remaining 46 primary tumor tissue samples and 36 normal
blood samples. It is noteworthy that a recent study has
shown that metabolites of Propionibacterium freudenreichii can
kill colorectal cancer cells, implicating its use as a probiotic
for the prevention and treatment of early colorectal cancer
(Casanova et al., 2018).

RESULTS AND DISCUSSION

First, we calculated the Shannon’s indices of infiltrating bacteria
for both normal blood samples and primary tumor tissue
samples. As shown in Figure 2, the alpha diversity of bacterial
communities indicated that the infiltrating bacteria in primary
tumor tissues were significantly more diverse than those in
normal blood samples. This finding was supported by previous
studies, which showed that the alpha diversity of microbes in
colorectal cancer biopsies was significantly higher than that in
other samples, such as feces and saliva (Russo et al., 2018).

Next, we identified the differential abundance of infiltrating
bacteria between normal blood samples and primary tumor
tissue samples. We used the wilcox.test() function in R
software to perform a non-parametric Mann–Whitney–
Wilcoxon test, followed by Benjamini–Hochberg procedure

FIGURE 3 | Differential analysis of the relative abundance of bacteria in the normal blood and primary tumor tissue samples. (A) Differential analysis of bacteria at the
genus level in normal blood and primary tumor tissue samples. The Benjamini–Hochberg false discovery rate (FDR)-corrected non-parametric
Mann–Whitney–Wilcoxon test was used to calculate the P-value and analyze the differences in bacteria. The box plots show bacteria significantly different at the
genus level. The “∗” symbol represents Q-value < 0.05; the “∗∗” symbol represents Q-value < 0.01; and the “∗∗∗” symbol represents Q-value < 0.001.
(B) Differential analysis of bacterial abundance at the species level in the normal blood and primary tumor tissue samples. To differentially analyze the diversity of
bacterial species in the normal blood and primary tumor tissue samples, the Benjamini–Hochberg FDR-corrected non-parametric Mann–Whitney–Wilcoxon test was
used. Letters B, F, and P in the x-axis represent Bacteroides, Fusobacterium, and Parabacteroides, respectively. (C) The stacked bar charts of the top 10 bacterial
species enriched in the normal blood samples and their relative abundance in the primary tumor tissue samples. (D) The stacked bar charts of the top ten bacterial
species enriched in the primary tumor tissue samples and their relative abundance in the normal blood samples.
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TABLE 2 | The most differentially abundant species between tumor and normal
samples (Q-value < 0.05).

Species P-value Q-value (adjusted FDR)

B. fragilis 1.36E−05 0.000715315

B. ovatus 1.31E−05 0.000715315

F. nucleatum 8.84E−06 0.000715315

B. dorei 1.88E−05 0.000850917

B. vulgatus 0.000112939 0.002974056

B. uniformis 0.000150549 0.00317157

P. merdae 0.000147964 0.00317157

B. finegoldii 0.000190032 0.003336119

B. stercoris 0.005728611 0.043100975

to compute the false discovery rate (FDR) and correct the
obtained P-values. We identified the most significantly different
genera (Q-value < 0.05), as shown in Table 1, and plotted
them in Figure 3A. As we can see, Bacteroides, Clostridium,

Fusobacterium, and Streptococcus were abundant in the
infiltrated primary tumor tissues, but nearly absent in the
normal blood samples.

These findings were widely supported by previous literature.
For instance, Flemer et al. (2017) showed that Bacteroides
spp. in the mucosal microbiota of patients with colorectal
cancer were more abundant compared to the normal control
group. Fusobacterium recruits tumor-infiltrating immune cells
to generate a pro-inflammatory microenvironment and promote
tumorigenesis by triggering inflammation (McCoy et al.,
2013). Colitis bacteria can alter host physiology to promote
cancer. They disrupt the balance of intestinal microflora and
introduce virulent genes that have been shown to promote
tumor formation in mice (Walsh et al., 2014). In addition,
many other species of Clostridium and Streptococcus, such as
Clostridium difficile (Zheng et al., 2017), Streptococcus gallolyticus
(Andres-Franch et al., 2017), and Streptococcus infantarius
(Kaindi et al., 2018), were reported to be associated with
colorectal cancer.

FIGURE 4 | Heat map and biclustering analysis of different colorectal cancer tissue samples based on phylogenesis of the bacterial species. Forty-three different
bacterial species among the 46 selected primary tumor tissue samples and 36 normal blood samples were used to prepare the heat map. The red color of the tree
diagram on the left hand side represents the primary tumor tissue samples, and the green color represents the normal blood samples.
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Whole genome sequence data allowed us to precisely identify
the most abundant species. We identified such species and
plotted the relative abundance of the top 10 most abundant
species in stacked bar charts as shown in Figures 3C,D. As
we can see, Escherichia coli, Ralstonia spp., and Bacteroides spp.
were abundant among all the primary tumor tissue samples
and normal blood samples. Among these, Ralstonia was a
common contaminant when DNA samples were screened (Salter
et al., 2014), and its relative abundance may be a result of
contamination. Both E. coli and Bacteroides spp. have important
functional roles and are commonly found in the human body
(Wexler, 2007).

In addition, we identified the most differentially abundant
species between tumor and normal samples (Q-value < 0.05),
as shown in Table 2, which included B. fragilis, F. nucleatum,
Parabacteroides merdae, B. dorei, B. vulgatus, B. stercoris,
B. finegoldii, B. uniformis, and B. ovatus (Figure 3B). It can
be seen that the relative abundance of Bacteroides fragilis,
B. dorei, and Fusobacterium nucleatum was also among the
top 10 abundant species in the primary tumor tissue samples
in this study, but they were much less abundant in the
normal blood samples.

A subsequent literature search has validated these species as
microbial markers of colorectal cancer. For instances, B. fragilis,
also known as ETBF, secretes B. fragilis toxins (BFT) that induce
immune cells to produce interleukin-17 (Wu et al., 2009).
This lymphokine acts on intestinal mucosal cells to initiate
the participation of more immune cells in the inflammatory
response, thereby leading to the development of inflammation-
related colorectal cancer (Kwong et al., 2018; Tilg et al.,
2018). F. nucleatum adheres to and invades colonic epithelial
cells, inducing tumor growth in patients with colorectal cancer
(Bullman et al., 2017; Shang and Liu, 2018). In addition,
F. nucleatum often presents in the human oral cavity to
cause periodontitis, and it is reported to be a risk factor
for colorectal cancer (Barton, 2017). Other identified bacterial
species, such as P. merdae, B. dorei, and B. vulgatus (Cipe
et al., 2015), are positively correlated with red meat intake and
negatively correlated with the intake of fruits and vegetables
(Feng et al., 2015). Red meat was widely recognized as a
dietary factor linked to the development of colorectal cancer
(Brenner et al., 2014). B. finegoldii and B. dorei can cause
bacteremia (Lee et al., 2015), along with B. Stercoris (Lucas et al.,
2017; Alomair et al., 2018), B. uniformis, and B. ovatus (Liang
et al., 2014), and they were all reported to be correlated with
colorectal cancer.

In Figure 4, we plotted the overall heat map of 43
bacterial species with significant differences. We used the R
heatmap.2 function to draw the figure. The left side of the
heat map demonstrates the clustering analysis of different
samples using Spearman’s correlation coefficients between the
relative abundance of bacteria. The figure clearly shows that
the infiltrating bacteria of the primary tumor tissue sample
were different from those of normal blood samples. The visible
diversity of bacteria in the primary tumor tissue samples was
significantly higher than that in the normal blood samples.

This result is consistent with the findings from the differential
analysis of alpha diversity. Interestingly, these 43 bacterial species
only rarely present in most of the normal blood samples. In
addition, the heatmap-based clustering analysis results showed
that the primary tumor tissues of colorectal patients and normal
blood samples were perfectly clustered with their sample types,
revealing their distinct community structure.

CONCLUSION

Cloud computing was developed recently in bioinformatics
research (Zou et al., 2013; Guo et al., 2018). In this study,
we developed a cloud-based bioinformatics pipeline to analyze
unmapped reads from whole genome sequencing of human
tumor tissues. The reads in the whole genome sequencing data
not mapped to the human reference genome were extracted
by SAMtools, followed by PANDAseq to assemble overlapping
reads, BWA to remap them to the bacterial genome reference
database, and GRAMMy to estimate relative abundance.

This pipeline was successfully applied to analyze the
infiltrating bacteria of 51 pairs of primary colorectal cancer
tumor tissue and normal blood samples. Group-based differential
diversity and relative abundance analysis was used to identify
microbial markers of colorectal tumor. Our results showed
that the total infiltrating bacteria in primary tumor tissues
was significantly more abundant than that observed in the
normal blood samples. The relative abundance of such bacteria
as B. fragilis, B. dorei, and F. nucleatum was significantly
higher in primary tumor tissues as compared to normal blood
samples. These bacteria are likely pathogenic microbial markers
for colorectal cancer. A literature search validated our findings
and revealed that these bacteria may induce tumor growth
by adhering to and infecting the intestinal epithelial cells and
secreting toxins.
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