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Sepsis susceptibility is significantly increased in patients with intracerebral hemorrhage
(ICH), owing to immunosuppression and intestinal microbiota dysbiosis. To date, ICH
with sepsis occurrence is still difficult for clinicians to deal with, and the mortality, as well
as long-term cognitive disability, is still increasing. Actually, intracerebral hemorrhage
and sepsis are mutually exacerbated via similar pathophysiological mechanisms, mainly
consisting of systemic inflammation and circulatory dysfunction. The main consequence
of these two processes is neural dysfunction and multiple organ damages, notably,
via oxidative stress and neurotoxic mediation under the mediation of central nervous
system activation and blood-brain barrier disruption. Besides, the comorbidity-induced
multiple organ damages will produce numerous damage-associated molecular patterns
and consequently exacerbate the severity of the disease. At present, the prospective
views are about operating artificial restriction for the peripheral immune system and
achieving cross-tolerance among organs via altering immune cell composition to reduce
inflammatory damage.
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INTRODUCTION

Intracerebral hemorrhage (ICH) is frequently accompanied by infection ranging from 11 to 31%
and long-term functional impairment (Ali et al., 2009; Lord et al., 2014). The majority of infectious
patients will rapidly deteriorate and finally develop sepsis, due to systemic metabolic disorders
and stress caused by excessive release of inflammatory factors and immunosuppression after ICH
(Berger et al., 2014; Cheng et al., 2018). Clinically, sepsis complicated by the ICH is common but
tricky in the neurosurgical intensive care unit and kills as many as a half (Goncalves et al., 2019).
Our retrospective cohort study has shown that approximately 28% of patients with ICH would
accompany sepsis, and sepsis is the leading cause of poor outcomes. Furthermore, approximately
80% of survivors will face severe sequelae of various organ damages, especially in the brain (Adam
et al., 2013). Actually, there are many synergies in the pathophysiological mechanism of both ICH
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and sepsis. For example, systemic inflammation after either
ICH or sepsis emerges as a crucial trigger and mediator in the
progression of secondary insult to the brain (Adam et al., 2013; Fu
et al., 2015). In addition, subsequent circulatory dysfunction can
be observed in both situations, leading to worse damage progress
(Taccone et al., 2010; Kopeikina et al., 2020).

To date, ICH with sepsis is still difficult for clinicians to deal
with, and the mortality and long-term cognitive disability are still
increasing. Thus, understanding the relevant pathophysiology
seems to be imminent and will be beneficial for the exploration
of specific therapies. In this review, we focus on the crosstalk
between ICH and sepsis and attempt to identify the mechanism of
cerebral dysfunction, aiming to provide a unique and systematic
insight into the interaction of the two diseases and guide
indications for clinical treatment.

PATHOPHYSIOLOGY

Intracerebral hemorrhage and sepsis are mutually exacerbated
via several pathophysiological mechanisms mainly consisting
of systemic inflammation and circulatory dysfunction (see
Figure 1).

Systemic Inflammation
On the onset of ICH, primary damage caused by disruption
of normal anatomy occurred pathologically in a limited area
and time window (Sun et al., 2016). Subsequently, the release
of blood components [red blood cells (RBCs), thrombin (Babu
et al., 2012), hemoglobin, and hemin (Robinson et al., 2009;
Babu et al., 2012)], coagulation factors, complement components,
and immunoglobulins activate multiple cerebral cells such as
endothelial cells, microglia, and astrocyte, which is followed
by proinflammatory cytokines release (Wagner et al., 2002;
Nakamura et al., 2005; Aronowski and Zhao, 2011). As a result,
the expression of Toll-like receptors (TLRs) and adhesion-
related molecules (ARMs) is upregulated (Kodali et al., 2021).
Furthermore, TLRs, as a group of class I transmembrane proteins,
are critical to identifying the pathogen-associated molecular
patterns (PAMPs) from bacteria (Zhu and Mohan, 2010;
Fitzgerald and Kagan, 2020) and damage-associated molecular
patterns (DAMPs) from systemic inflammatory injury (Kong and
Le, 2011). Owing to the above contributors, the cerebral cells will
transform into a “hyper-alert state” and become highly sensitive
to exogenous substances and active signals. Thus, it is sepsis
insult in patients with ICH, which is similar to adding fuel to
the fire. The peripheral immune cells are selected and activated
by invasive bacteria or toxins in circulation, secreting a series
of inflammatory cytokines to induce the systemic inflammatory
responses, which further amplify cerebral cell signal cascades
(Singer et al., 2018) and bring catastrophic damage to the central
nervous system (CNS).

Circulatory Dysfunction
In parallel, circulatory dysfunction can be observed after ICH
and sepsis owing to pathological hypoperfusion and coagulation
system disorders (Zheng and Wong, 2017; Font et al., 2020).

During this process, inflammatory mediators first trigger the
endothelial cells to express typical ARMs such as vascular
cell adhesion molecule-1 (VCAM-1), intracellular cell adhesion
molecule-1 (ICAM-1), endothelin-1, and platelet/endothelial cell
adhesion molecule (Machado-Pereira et al., 2017). Especially,
endothelin-1 is associated with continuous cerebral vasospasm
resulting in local brain ischemia and hypoxia (Zheng and
Wong, 2017). Activation of coagulative factors and formation of
white/red blood cell plugs are also participating in the ischemic
process. Excessive thrombin activation and platelet consumption
are implicated with disseminated intravascular coagulation in
the late stage (Goyette et al., 2004). Virtually, in the setting of
systemic inflammation, the cerebral blood vessels are initially
affected by CNS and that mediates further cytokine-dependent
signals (Wong et al., 1996; Laflamme and Rivest, 1999). It
has been confirmed that macro- and microcirculatory failure
occurred rapidly and that is attributed to neurovascular coupling
disorder (Rosengarten et al., 2009). Subsequently, extensive
cells, especially brain cells, are damaged by compromised
supplements of oxygen, nutrients, and metabolites (Sharshar
et al., 2004). In turn, these damage signals can feedback
to the central and peripheral cells and further augment
systemic inflammation, which predisposes to a vicious circle of
CNS dysfunction.

SEPSIS SUSCEPTIBILITY INCREASED
BY INTRACEREBRAL HEMORRHAGE

Immunosuppression
The immune system will undergo a profound attenuation
process in the setting of severe CNS injury (including traumatic
brain injury, stroke, and spinal cord injury) (Fu et al.,
2015). A meta-analysis consisting of 137,817 patients has
identified the correlation between the high rates of systemic
infections and stroke, and reported that approximately 30%
of patients with stroke were along with infection including
pneumonia or urinary tract infection (Westendorp et al., 2011).
Temporary lymphopenia and splenic shrunk can be observed
in both humans and animals at the early stage of stroke, via
activation of the sympathetic, parasympathetic (cholinergic anti-
inflammatory), and hypothalamus-pituitary-adrenal (HPA) axis
pathways (Ajmo et al., 2009; Sahota et al., 2013). Thereby, the
levels of noradrenaline, acetylcholine, and glucocorticoids in
circulation are abruptly elevated by the promotion of these active
neuroendocrine pathways, which are responsible for apoptosis
and atrophy of lymphoid organs (Wong et al., 2011; Mracsko
et al., 2014). This downregulation of immune cell generation
and function that originates from the injured brain is aiming
to avoid autoimmunity against brain antigens from the death
or impaired cells (Fu et al., 2015), whereas it causes systemic
immunosuppression and makes the body vulnerable to infections
simultaneously (Hug et al., 2009).

Intestinal Microbiota Dysbiosis
The gut vascular barrier (GVB) mainly comprises three defense
lines including the biological barrier set up by gut microbiota
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FIGURE 1 | Two main pathophysiological processes are involved in brain dysfunction in ICH with sepsis. These two processes are interdependent, on one hand, and
mutually independent, on the other hand. Circulatory dysfunction will be followed by microcirculatory dysfunction and finally result in ischemia and hypoxia of tissues
and multiple peripheral organ damages. In systemic inflammation, proinflammatory mediators will be released, and the DAMPs from the periphery will be allowed into
the brain due to BBB disruption, which consequently activates CNS cells. The main consequence of these two processes is neural dysfunction, notably via oxidative
stress and neurotoxic mediation. Neural dysfunction widely exists in the brain and accounts for the brain dysfunction via the alteration of neurotransmission. DAMPs,
damage-associated molecular patterns; BBB, blood-brain barrier; CNS, central nervous system.

(Assimakopoulos et al., 2007) and keeps intestinal homeostasis.
Intestinal flora displays important metabolic, immunologic,
and gut protective functions modulated by the so-called
“gut-brain axis” (Haak et al., 2018). Numerous models have
shown that microbiota have the potentials to augment the
proinflammatory effect of immune cells and even conduct
the influx of immune effector cells into distant organs,
probably mediated by microbe-associated molecular patterns
including lipopolysaccharide (LPS), peptidoglycan, flagellin, and
microbiota-derived metabolites (Magnotti et al., 1998; De-Souza
and Greene, 2005). Moreover, the microbiota can induce the
secretion of antibacterial factors from the gut-epithelial cells
and, consequently, augment humoral responses against invading
pathogens (Kim et al., 2017). ICH occurrence disturbs GVB
integrity and intestinal hemostasis and, ultimately, alters the
microbiota composition (Patterson et al., 2019; Rice et al.,
2019). A recent study also has confirmed the prominent
reduced species diversity and microbiota overgrowth in the
dysbiosis induced by ICH, which may reduce intestinal motility
and increase gut permeability. While recolonizing, normal
health microbiota therapy ameliorated neural deficits and

inflammation after ICH (Yu et al., 2021). Thus, it provides
an opportunity for the potential translocation of aerobic
opportunistic pathogens whereby impaired GVB and, finally,
results in the onset of gut-origin sepsis (Donskey, 2004; Haak
et al., 2017; Huber-Lang et al., 2018).

SEPSIS-ASSOCIATED INFLAMMATORY
SIGNALS TO CENTRAL NERVOUS
SYSTEM ENHANCED ON
INTRACEREBRAL HEMORRHAGE

Signal Pathways in Central Nervous
System Response to Sepsis Threat:
Neural, Humoral, and Blood-Brain
Barrier Alteration
There are three pathways to capture sepsis signals by CNS (Ali
et al., 2009). Nervous pathways, mainly initiated by PAMPs
and inflammatory cytokines via the primary afferent (vagal
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and trigeminal) and sensorial (olfactory) nerves (Sonneville
et al., 2013). At this time, visceral inflammation due to
sepsis can be detected by the vagal nerve depending upon
its terminal cytokine receptors (Tracey, 2009). In addition,
the vagal nucleus transmits signals to the central autonomic
system, the neuroendocrine centers, and the amygdala, leading
to the alteration of behaviors and emotions (Adam et al.,
2013; Lord et al., 2014). Humoral pathways, conducted by
circulating inflammatory mediators through choroid plexus
(CP) and circumventricular organs (CVOs) (Sonneville et al.,
2013). CVOs are defined as the fenestrated regions lacking
the intact blood-brain barrier (BBB) around the brain, and
hence, molecules and peripheral cells can directly access the
cerebral parenchyma through these regions (D’Mello and
Swain, 2014). Similar to CVOs structure lacking BBB, CP
is constituted of cuboidal epithelium cells and is responsible
for secreting cerebrospinal fluid (Ghersi-Egea et al., 2018).
Both of these structures express receptors of innate and
adaptive immune systems, allowing them to detect central and
peripheral inflammatory signals (Adam et al., 2013; Ghersi-
Egea et al., 2018). Once relevant signals were captured,
they will be amplified and transmitted to deeper areas
implicated with controlling behavioral, neuroendocrine, and
neurovegetative responses via above two structures (Adam
et al., 2013; Berger et al., 2014). BBB alteration, enabling
monocytes infiltration, and inflammatory molecules invading
in the systemic inflammation (Meneses et al., 2019). Activated
endotheliocytes express ARMs and release several inflammatory
mediators such as cytokines, prostaglandins, and nitric oxide
(Johnston and Webster, 2009). It is involved in the regulation of
neurotransmission and neurosecretion (Johnston and Webster,
2009). Studies have reported that both pro-inflammatory
cytokines [i.e., tumor necrosis factor (TNF)-α and interleukin
(IL)-6 and IL-1β] and anti-inflammatory cytokines (i.e., IL-1Ra
and IL-10) collectively participated in these systemic responses
and formed inflammation homeostasis (Wong et al., 1997;
Ilyin et al., 1998; Pintado et al., 2011). However, the abrupt
presence of ICH or sepsis breaks the balance and causes an
inflammatory signal cascade.

Central Nervous System Innate
Cells-Associated Responses: Endothelial
Cell Activation, Immunocyte Activation,
and Blood-Brain Barrier Alteration
Endothelial cell activation is a crucial step in the CNS
responses to sepsis, which affects microcirculatory function
and BBB integrity. Evidence confirmed that LPS could
induce various ARM expressions on the endothelial cells
such as CD40, E-selectin, VCAM-1, and ICAM-1 (Hess
et al., 1996; Wong et al., 1997; Omari and Dorovini-Zis,
2003; Hofer et al., 2008). In addition, several receptors for
IL-1, TNF-α, and TLR4 were also upregulated (Wong et al.,
1997; Zhou et al., 2009). And these receptors contribute to
the secretion of TNF-α, IL-6, and IL-1β, followed by the
generation of endothelial/inducible nitric oxide synthase (Freyer
et al., 1999; Handa et al., 2008) and type-2 cyclooxygenase

(Matsumura et al., 1998). In virtue of these inflammatory
mediators, microglia are mobilized to secrete several cytotoxic
molecules (Meneses et al., 2019), and astrocytes are also triggered
to produce chemokines (the C-C chemokine ligand 2, IL-6,
chemokine C-X-C ligand10) via NF-κB pathways (Mayo et al.,
2014). Furthermore, the expression of ARMs and TLR4 as
well as the conduction of chemokines collectively choose
infiltration of peripheral monocytes and their participation
in neuroinflammation (Adam et al., 2013). Microcirculatory
dysfunction has been widely observed in multiple sepsis models
owing to the aggregation of circulating white cells and monocytes
in the CNS capillaries, compromising supplements of oxygen,
nutrients, and metabolites (Bohatschek et al., 2001; Hofer et al.,
2008; Zhou et al., 2009; Taccone et al., 2010). The BBB alteration
has been clearly confirmed whereby versatile methods, including
blue Evans, fluorescent-labeled dextran clearance, labeled
granulocytes, electron microscopy, and magnetic resonance
imaging in sepsis models and also in patients (Papadopoulos
et al., 1999; Esen et al., 2005, 2012; Sharshar et al., 2007;
Handa et al., 2008; Bozza et al., 2010). Furthermore, a recent
study has confirmed that BBB displayed a short-term closure
at the early stage of inflammation and gradually opened up
as the disease progressed (Carloni et al., 2021). Nonetheless,
it eventually allows for the entry of neurotoxic molecules,
particularly inflammatory mediators, consequently giving
rise to brain cell death in systemic inflammation. Likewise,
extensive studies have found that the neuroinflammation
in the ICH was complicated with gliacyte activation and
BBB alteration (Anrather and Iadecola, 2016; Wofford
et al., 2019). Therefore, all above mentioned mechanisms
indicate that the occurrence of ICH greatly increases the risk
of sepsis.

NEURAL DEATH ON INTRACEREBRAL
HEMORRHAGE WITH SEPSIS

Intracerebral hemorrhage and sepsis can cause similar patterns
of neural death and are discussed in the following text (Table 1;
Castagna et al., 2016; Oberst, 2016; Lewerenz et al., 2018;
Li et al., 2018; Takashima et al., 2019; Nagase et al., 2020).
Reactive oxygen species (ROS), a kind of physiological defense
molecule, can be maintained at a steady level via mitochondrial
oxidative phosphorylation and antioxidant mechanisms (Zhou
et al., 2020). However, the onset of ICH or sepsis overgenerates
ROS and then causes mitochondrial damage, leading to the
deterioration of iron metabolism (Zhou et al., 2020; Liu et al.,
2021). Subsequently, hemin released from RBC lysis owing to
the elevation of cytokines or bacterial toxins also accounts for
excessive free iron in the extracellular matrix (Soares and Weiss,
2015; Ganz, 2016). Subsequently, extracellular iron bounding to
the transferrin receptor is internalized by the cells under the
drive of inflammatory cytokines (Ludwiczek et al., 2003). Excess
iron in the cytoplasm significantly dampens enzyme activity
and typically causes potent oxidization, resulting in various cell
ferroptosis including neurocytes (Liu et al., 2021). Numerous
reports have indicated that ferroptosis is invariably followed
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TABLE 1 | Neuronal death patterns of both ICH and sepsis.

Types Activators Characterization References

Ferroptosis Iron and
extracellular
glutamine

Plasma membrane integrity loss,
organelles disruption and swelling,
mitochondria shrunk, without DNA
fragmentation

Li et al., 2018

Necroptosis Inflammatory
factors

Plasma membrane integrity loss,
organelles disruption and swelling,
without mitochondria shrunk,
without DNA fragmentation

Oberst, 2016;
Li et al., 2018

Apoptosis Inflammatory
factors

Chromatin condensation, nuclear
shrinkage, and DNA fragmentation

Castagna
et al., 2016;
Li et al., 2018

Oxytosis Glutamate;
ROS

Mitochondrial fragmentation,
without DNA fragmentation

Lewerenz
et al., 2018;
Takashima
et al., 2019;
Nagase et al.,
2020

Pyroptosis Inflammatory
factors

Nuclear condensation, cell
swelling, lipid membrane vacuole
formation, lipid membrane
ruptures, without DNA
fragmentation

Li et al., 2018

by necroptosis (Zhou et al., 2020), and NADPH might be the
connectional mediator between the two patterns of cell death
(Hou et al., 2019). In systemic inflammation, necroptosis can
be initiated by several cytokines including, but not limited to,
TNF (Oberst, 2016). Once ferroptosis or necroptosis happened,
adjacent cells are likely predisposing to another kind of death
pattern especially oxytosis (Zhou et al., 2020). Highly similar
to the mechanism of ferroptosis, oxytosis occurrence is also
related with the extensive ROS failed to be metabolized because
of glutathione depletion (Landshamer et al., 2008; Grohm et al.,
2010). Many studies even regarded oxytosis as a component
of ferroptosis (Soares and Weiss, 2015; Zhou et al., 2020),
and this needs further research to clarify. Apoptosis has been
well studied by numerous researchers and mainly conducted by
two pathways, namely extrinsic and intrinsic pathways. Among
them, the extrinsic pathway is activated by cell surface receptors
including TNF receptors (Hasegawa et al., 2011; Fricker et al.,
2018; Zhao et al., 2018). Under the condition of systemic
inflammation in ICH or sepsis, cerebral proinflammatory factors
(e.g., TNF) are released in large quantities, and consequently, the
Fas-associated death domain protein can be chosen to activate
caspase-8 causing neural apoptosis (Micheau and Tschopp, 2003).
Pyroptosis is one of the characteristic manners of cell death upon
inflammation. In experimental models, it has been demonstrated
to be induced by proinflammatory cytokines (i.e., IL-1β and
IL-18) via the combination on the cell membrane between the
lipid-selective N-terminal domain and phosphatidylinositol of
the lipid plasma membrane (Shi et al., 2015; Ding et al., 2016;
Feng et al., 2018). To sum up, inflammatory cytokines and
metabolites are prioritized to induce neural death in the ICH
with sepsis. Therefore, inhibition of neuroinflammation might be
important for curbing brain function deterioration and warrant
to be further explored.

MULTIPLE ORGAN
DAMAGE-ASSOCIATED MOLECULAR
PATTERNS RELEASE EXACERBATES
CENTRAL NERVOUS SYSTEM
DYSFUNCTION

Inflammatory Imbalance
Acute brain injury including ICH occurrence will initiate
neuroinflammation and then spread inflammatory signals to
the periphery, and monocyte infiltration might be a crucial
mediator in this process. In an LPS-induced neuroinflammatory
mouse model, the infiltrated neutrophils exhibited reverse
trans-endothelial migration back to the bloodstream after
interacting with microglia (Kim et al., 2020). Subsequently,
these reverse-moving neutrophil-transported signals to several
organs have been reported in numerous studies. For example,
the upregulation of inflammatory cytokines (e.g., IL-8 and IL-10)
were observed in the kidney used for organ donation, resulting
in the reduction of allograft survival via increasing the number
of trafficking inflammatory cells (i.e., FoxP3+ regulatory T cells)
(Morariu et al., 2008; Kim et al., 2020). In addition, in the
brain injury models, infiltrated monocytes and macrophages
were demonstrated to produce several chemoattractants (i.e.,
leukotriene-B4) and other cytokines (e.g., IL-1β, IL-6, and
TNF-α), causing the amplification of pulmonary inflammation
(Kalsotra et al., 2007; Mrozek et al., 2015). In addition, other
organ damages such as the spleen (Li et al., 2011), gastrointestinal
tract (Fung et al., 2017), and liver (D’Mello and Swain, 2014)
owing to neuroinflammation have been reported in previous
studies. Meanwhile, in sepsis, the reactions of the host to
invasive bacteria or toxins typically induce phagocytosis in
macrophages and secrete a series of proinflammatory cytokines
(Takeuchi and Akira, 2010). Besides, this so-called “cytokines
storm” subsequently activates the innate immune system (D’Elia
et al., 2013). Apparently, the activation of the innate immune
system, which is modulated by pattern-recognition receptors,
upregulates the expression of associated inflammatory genes
via detecting PAMPs or DAMPs (Raymond et al., 2017). Thus,
the simultaneous occurrence of ICH and sepsis can elicit the
superposition of inflammatory effects and cause extensive organ
damages. Obviously, the inflammatory imbalance represents the
most important basis for brain dysfunction pathogenesis in the
ICH with sepsis and occurs throughout the whole process of the
ICH with sepsis.

Ischemia Process
Ischemia processes, consisting of microcirculatory dysfunction
and macrocirculatory dysfunction, can be observed in the
ICH and sepsis development. Furthermore, microcirculatory
dysfunction arising from endothelial cell activation has been
well-demonstrated in various sepsis models (Taccone et al.,
2010). Meanwhile, endothelial cell dysfunction also activates
the coagulation system to participate in the ischemia process
(Adam et al., 2013). Similar processes have been reported in
acute cerebral injury patients with vasospasm. It is presented
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as persistent narrowing of cerebral arteries and is believed to
be contributed by spasmogenic or neuroinflammatory factors
(Kassell et al., 1985; Taccone et al., 2010), which indicates
the role of inflammation in the ischemia process. In addition,
severe inflammatory responses caused by sepsis will disturb
neurovascular coupling, followed by a disorder of heart rate and
blood pressure and deterioration of macrocirculation (Godin
and Buchman, 1996; Jafari and Damani, 2020). It has been
reported the autonomic controlling system of the heart and
vessel is compromised in polymicrobial sepsis because of the
degraded autonomic nervous system (Pancoto et al., 2008).
Besides, the parasympathetic nervous system (e.g., vagal nerve)
is regarded as one of the critical pathways connecting the
center and periphery, suggesting that the autonomic nervous
system functions and inflammation may be interdependent
(Huston and Tracey, 2011). The damage to the susceptible
regions of the CNS, whether chemical or mechanical nature, can
augment the sympathetic nerve or HPA axis, further causing
the dysregulation of catecholamine and dopamine secretion
(Lattanzi et al., 2018). The amount of catecholamine released
into the bloodstream will activate α-receptors on the cell surface
to produce vasoconstriction for abdominal viscera, leading
to consequent hypoperfusion and ischemic injury (Lattanzi
et al., 2018). In conclusion, the ischemia process in the
ICH accompanied with sepsis is under the co-modulation of
inflammation and neuroendocrine changes.

Damage-Associated Molecular Patterns
Generation and Insult
Damage-associated molecular patterns are non-microbial
molecules in the host nucleus or cytoplasm and consist of
high mobility group box 1 (HMGB1), histones, and adenosine
triphosphate (Sunden-Cullberg et al., 2005; Ekaney et al., 2014;
Zhou et al., 2015). Once released to the extracellular matrix
from injury cells, they will act as the effective activators of the
immune system and perpetuate non-infectious inflammatory
responses to cause systemic inflammation and cellular injury,
even death (Matzinger, 1994; Seong and Matzinger, 2004;
Rubartelli and Lotze, 2007). In addition, the exact mechanisms
may be implicated with the proinflammatory cytokines and
chemokines secreted from active macrophages/microglia, which
facilitates excessive neutrophil activation and infiltration into the
tissues (Denning et al., 2019). Activated neutrophils can generate
several kinds of toxic mediators including ROS and inducible
nitric oxide synthase (iNOS) to cause oxidative stress and cellular
injury (Gentile and Moldawer, 2013; Schaefer, 2014; Brinkmann,
2018). TLRs are considered as the pivotal signal receptors
for DAMPs. Rodriguez-Yanez et al. (2012) have reported in a
recent clinical study that the upregulation of TLR2 and TLR4
in the peripheral monocytes is closely related to the undesired
prognosis in patients with ICH. In addition, the improved
neurological function after ICH onset was demonstrated in the
TLR4-knockout rodent (Sansing et al., 2011; Lin et al., 2012).
HMGB1, as one of the DAMPs extensively discussed, can enable
microglia to increase the NF-κB activity and the transcription of
cyclooxygenase-2, TNF-α, and IL-1β (Yang et al., 2011). In turn,

the TNF-α can feedback on microglia to facilitate the release of
HMGB1 (Wang et al., 2015). Evidence indicated that HMGB1
may be contributive to the poor outcomes after CNS injury and
the serum levels, which was associated with the disease severity
(Nakahara et al., 2009; Zhou et al., 2010).

In summary, under the effect of inflammatory imbalance
and ischemia, injury and/or death cells in multiple organs
release DAMPs into circulation and amplify systemic
inflammation, accompanying oxidative stress and cytotoxic
mediator production, further causing more damage and brain
dysfunction worsening.

PERSPECTIVE AND CONCLUSION

Increasing evidence has indicated that there is an inextricable
inflammatory association between the center and periphery.
CNS injury will spread the danger signals to the periphery,
and vice versa. Under the mediation of systemic inflammation
and circulatory dysfunction, the pathological changes can be
observed in multiple organs of the patients with ICH or sepsis.
Recent advances in the multi-omics analysis could provide vivid
evidence regarding the cascade of biofluids from the injured
brain, namely, cerebrospinal fluid and circulation blood, and
urine and saliva. In contrast, clinical therapies for patients with
ICH with sepsis frequently focus on a single organ or system
lacking holistic ideas, causing dissatisfied outcomes. For the ICH
process, sepsis presence displays an aggravation to peripheral
inflammation imbalance that should not be ignored. Although
there are many methods attempting to modulate the peripheral
immune system, such as antibiotic prophylaxis and probiotic
therapy, and have shown limited achievement (Kim and Cho,
2021), the prospective views considered that we should operate
artificial restriction for the peripheral immune system and
achieve the cross-tolerance among organs via altering immune
cell composition. Based on that, stem cell therapy was extensively
used in clinical trials for diverse diseases including hemorrhagic
stroke, and exhibited many advantages. Therefore, further study
for crosstalk between center and periphery might be beneficial for
us to explore potential methods for improving brain dysfunction
and prognosis in patients with ICH or sepsis or combination.
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