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Autoimmune rheumatic diseases, such as Sjögren syndrome (SS) and rheumatoid arthritis 
(RA), are characterized by chronic inflammation and autoimmunity, which cause joint 
tissue damage and destruction by triggering reduced mobility and debilitation in patients 
with these diseases. Initiation and maintenance of chronic inflammatory stages account 
for several mechanisms that involve immune cells as key players and the interaction 
of the immune cells with other tissues. Indeed, the overlapping of certain clinical and 
serologic manifestations between SS and RA may indicate that numerous immunologic-
related mechanisms are involved in the physiopathology of both these diseases. It is 
widely accepted that epigenetic pathways play an essential role in the development and 
function of the immune system. Although many published studies have attempted to 
elucidate the relation between epigenetic modifications (e.g. DNA methylation, histone 
post-translational modifications, miRNAs) and autoimmune disorders, the contribution of 
epigenetic regulation to the pathogenesis of SS and RA is at present poorly understood. 
This review attempts to shed light from a critical point of view on the identification of 
the most relevant epigenetic mechanisms related to RA and SS by explaining intricate 
regulatory processes and phenotypic features of both autoimmune diseases. Moreover, 
we point out some epigenetic markers which can be used to monitor the inflammation 
status and the dysregulated immunity in SS and RA. Finally, we discuss the inconvenience 
of using epigenetic data obtained from bulk immune cell populations instead specific 
immune cell subpopulations.

Keywords: epigenetics, autoimmune diseases, epigenetic pathways, rheumatic diseases, DNA methylation, 
histone modifications, miRNAs
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iNTRODUCTiON
More than 200 different disorders are considered autoimmune 
rheumatic diseases, but immune system complexity and the 
diversity of shared features make diagnosis and prognosis arduous 
tasks, especially in early follow-up stages (Alarcón et al., 1991). 
Studies performed using monozygotic twins have revealed an 
important epigenetic role in the progression of rheumatic diseases 
in addition to genetic factors (MacGregor et al., 2000; Javierre 
et al., 2010). Autoimmune rheumatic diseases, such as Sjögren 
syndrome (SS) and rheumatoid arthritis (RA), are characterized 
by pain and chronic joint inflammation. In fact, given the overlap 
of certain clinical features between SS and RA, it is assumed that 
the genetic contribution to SS and RA may be due to a multigenic 
contribution, which may affect many immunological-related 
mechanisms (Table 1). In line with this, Yang et al., suggested that 
patients with SS should be explored for a second autoimmune 
associated disease or more, such as RA (Yang et al., 2018), 
because all autoimmune diseases share a common phenotype 
and mechanisms. Therefore, genetic and epigenetic factors might 
influence poly-autoimmunity development (Anaya et al., 2016).

He et al. described RA as a systemic autoimmune disease 
that causes extra-articular complications and damage (He et al., 

2013a). SS is defined as a chronic autoimmune disease caused 
by the diminished function of salivary and lacrimal glands due 
to the lymphocytic infiltration of exocrine glands (Ramos-Casals 
et al., 2007; He et al., 2013a). SS can be classified as primary 
or secondary, depending if it coexists with other autoimmune 
diseases or not, such as RA (Ramos-Casals et al., 2007). Both 
SS and RA present female predominance and produce chronic 
inflammation of joints which, in turn, causes pain and impedes 
normal mobility in affected patients. It is well-known that a 
person who suffers both pathologies, e.g. secondary SS and 
RA, has a worse prognosis and faces more comorbidities and 
increased mortality (He et al., 2013a).

Of the common features found in both RA and SS, we 
underscore chronic inflammation, the interaction of the immune 
system and other tissues, such as skeletal tissue in RA and exocrine 
glands in SS, and autoimmunity that produce tissue damage and 
destruction which, in turn, lead to reduced mobility. Initiation 
and maintenance of the chronic inflammatory stages accounts 
for several mechanisms involving immune cells as key players. 
Pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-6, 
IL-8, and tumor necrosis factor α (TNF-α), can be produced 
by circulating monocytes that differentiate to macrophages 
or dendritic cells (Arango Duque  and Descoteaux,  2014). 

TABLE 1 | Principal and common characteristics of RA and SS.

Disease Prevalence 
(%)

General and common 
clinical features

Candidate genes Organs and tissues 
affected

Autoantigens Epigenetics 
mechanisms

RA 0.8 • Female prevalence
• Pain and chronic joint 

inflammation
• Reduced mobility
• When a person suffers 

RA and SS, their course 
worsen and comorbidities 
and mortality increase

• Morning stiffness
• Interstitial lung disease
• Anemia
• Hyperinmmunoglobulinemia
• Xerophthalmia and 

xerostomia
• Rash
• Lymphoadenopathy
• Thyroid involvement 

(hypothyroidism)
• Hypertension

• ANKRD55
• CD247
• HLA-DRB1
• IL2RA
• IL2RB
• IL6
• LACC1
• MIF
• PTPN2
• PTPN22
• STAT4

• Heart
• Bones
• Lung
• Synovial joint 

tissue
• Connective tissue

• Rheumatoid factor
• Cyclic citrullinated 

peptides (anti-CCP)
• hnRNP-A2/RA33
• Ro/SSA
• Sa 50 kDa protein
• Stress proteins 

(hsp60, BiP, hsp90)
• Glucose-6 phosphate 

isomerase
• Calpastatin

• Hypomethylated 
IFNG promoter in pro-
inflammatory T-cells 
(CD4+CD28T- T-cells)

• Hypomethylation 
is apparently 
accompanied by 
the hyperacetylation 
of histones, which 
contributes to the 
control of epigenetic 
programs in enhancer 
regions

• miR-146a and 
miR-155 appear as 
relevant epigenetic 
switches, and both 
can be considered to 
monitor inflammation 
status

SS 0.1–0.6 • IRF5
• STAT4
• IL12A
• BLK
• CXCR5
• TNIP1

• Salivary glands
• Exocrine glands
• Lacrimal glands
• Connective tissue
• Lungs
• Bowel

• Ro/SSA
• La/SSB
• Antinuclear 

antibodies (ANA)
• Rheumatoid factor
• Cryoglobulins
• Centromere (ACA)
• Cyclic citrullinated 

peptides (anti-CCP)
• Mitochondria (AMA)
• Muscarinic 3 receptor
• Carbonic anhydrases
• Smooth muscle
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Monocytes produce reactive oxygen species (ROS) and 
cyclooxygenase-2 (COX2) as mediators of inflammation (Lu 
and Wahl, 2005), and attract T- and B-cell chemokines which, 
in turn, produce pro-inflammatory cytokines. Activated B-cells 
are able to present autoantigens and generate autoantibodies 
that preserve inflammation and can, consequently, lead to tissue 
destruction in these autoimmune rheumatic diseases. In fact, 
a hallmark of autoimmune rheumatic diseases is the presence 
of autoantibodies at non organ-specific antigens, specifically 
antigens occurring in nucleated cells or among circulating 
plasma proteins (Aggarwal, 2014). Diversity in environmental 
stimuli requires a quick dynamic response of immune cells. In 
this fast efficient functional response, epigenetic mechanisms 
play an essential role in, for example, hematopoietic cell 
differentiation. Relevant differences in epigenetic regulation 
between innate and adaptive immune cells have been described. 
Most are implicated in the hematopoietic process, although 
other epigenetic alterations are associated with myeloid and 
lymphoid lineage function (Avgustinova and Benitah, 2016). 
Inflammation as a transitory physiological process protects from 
pathogenic invasions, while inflammation malfunction can 
produce tissue damage and organ dysfunction, and can mediate 
several pathological processes. Genetic and epigenetic variability 
in physiological and pathological processes in immune cells is 
a complex and carefully regulated equilibrium that is difficult 
to decipher.

This review shows the epigenetic mechanisms related to RA 
and SS so as to identify the unclear association between SS and 
RA by elucidating the intricate mechanisms underlying the 
phenotypic features of both autoimmune diseases.

EPiGENETiC REGULATiON OF GENETiC 
PROGRAMS iN iMMUNE CELLS
Genome-wide associated studies (GWAS) have identified 
hundreds of risk loci for autoimmunity (Parkes et al., 2013). 
Integrated genetic and epigenetic fine mapping may help to 
identify the causal variants and epigenetic drivers that lead to 
autoimmune disease-associated loci and, in turn, contribute to 
explore their role in the control of the immune response (Farh 
et al., 2015).

Mammals' blood system have highly specialized cell types 
that derive from hematopoietic stem cells (HSCs). HSCs play the 
important role of maintaining the homeostasis of specialized cell 
types' production and self-renewal (Wilson et al., 2008, Wilson 
et al., 2009). Epigenetic studies have demonstrated that during 
the differentiation of HSCs, DNA methylation, microARNs 
(miRNAs), and histone modifications play key roles in expression 
programs by shifting from pluripotency and proliferation to 
mature differentiated immune cells (Avgustinova and Benitah, 
2016; Mehta and Baltimore, 2016). Some of these mechanisms 
can fail due to erroneous epigenetic program, which may alter 
the immune responses in SS and RA. The next part of this review 
describes some of epigenetic drivers that lead to autoimmunity 
and altered immune response.

DNA Methylation
DNA methyltransferases and the ten-eleven translocation 
(TET) families of enzymes regulate DNA methylation and 
demethylation during hematopoietic differentiation. For this 
reason, whole genome bisulfite sequencing (WGBS) has been 
performed to clarify DNA methylation changes in immune 
cell development (Morales-Nebreda et al., 2019). For example, 
Cabezas-Wallscheid et al. compared gene expression profiles and 
differentially methylated regions (DMRs) between HSCs and 
four multipotent progenitor populations (MPP) in mice. During 
an early transition of HSC to MPP, they found an association 
between DMR and inversely correlated gene expression during 
differentiation. In the most inversely correlated genes, they 
observed genes related to hematopoietic differentiation and HSCs 
function, such as Hoxb2, Rorc, and Cd34 (Cabezas-Wallscheid 
et al., 2014). Differences in the methylation profile have been 
described as being lineage-specific in innate and adaptive 
immune systems. HSCs differentiate to multipotent progenitors 
of lymphoid (CLP) and myeloid (CMP) lineages, which present 
different DNA methylation patterns. In particular, CLP show 
increased DNA methylation in a diversity of transcription factors 
that regulates myeloid differentiation (e.g. Gata2, Tal1, and 
Lmo2) (Bock et al., 2012).

Both B- and T-cell activation, and proliferation, 
differentiation, and plasticity, are regulated and mediated by 
not only epigenetic mechanisms, but also by transcription 
factors and signaling molecules. The combinational activity 
of these mechanisms produces a characteristic transcriptome 
to each subset of differentiated B- and T-cells. The transition 
from naive to effector B-cells and T-cells exhibits different DNA 
methylation patterns. In fact, a DNA methylation analysis of 
B-cells performed in different development stages has shown 
a hypomethylation tendency after activation, which is reverted 
in memory B-cells. In addition, DNA methyltransferases (i.e. 
DNMTs; DNMT1, DNM3A, and DNMT3A) have also shown 
a shift in their expression levels between naive B-cells and late-
stage differentiated B-cells (Lai et al., 2013). Activation of the axis 
JAK3-STAT6 pathway by IL-4 produces demethylation, which 
is TET2-dependent in monocytes and necessary for acquiring 
proper dendritic cell and macrophage identity (Vento-Tormo 
et al., 2016).

The DNA methylation regulation of T-lymphocyte 
differentiation has been widely described (Kanno et al., 2012; 
Morales-Nebreda et al., 2019) and is briefly described herein. 
The development of CD4+ helper T-cells and CD8+ cytotoxic 
T-cells from CLP is a complex regulated process in which 
methylation plays an important role. For example, Sellars 
et  al. found that double negative (CD4−CD8−), double positive 
(CD4+CD8+) timocytes, and mature CD8+ cytotoxic T-cells 
present hypermethylation in a DMR near the Cd4 gene, while 
CD4+ helper T-cells showed hypomethylation. These authors also 
revealed that DNMT1 is responsible for the Cd4 gene silencing 
in CD8+ cytotoxic T-cells (Sellars et al., 2015). Activated CD4+ 
helper T-cells are guided to proliferate and differentiate to diverse 
T-helper cells to perform distinct functions. Many conditional 
deletion models of different DNMTs have pointed out the 
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importance of methylation in regulating cytokine expression 
and the stabilization of subset IFN-γ-producing Th1 and IL-4-
producing Th1 cell phenotypes (Lee et al., 2001; Gamper 
et  al., 2009). Furthermore, the DNA methylation of many cys-
regulatory elements involved in lfng expression in mice becomes 
demethylated in the IFN-γ-producing subset of Th1 cells, 
although these regions remain methylated in the subset IL-4-
producing Th2 cells (Schoenborn et al., 2007). Another example 
of the importance of DNA methylation in the regulation of 
differentiation to various subsets of T-helper cells is regulatory 
T cells (Treg), which are characterized by Foxp3 expression 
(Hori et al., 2003). Lal et al. have described demethylated levels 
of a specific upstream Foxp3 CpG site in the Foxp3 enhancer of 
naive Treg compared to CD4+ helper T-cells and TGFβ-induced 
peripheral Treg (Lal et al., 2009). Finally, a recent WGBS study 
has identified up to 339 DMRs in Treg cells that map to the sites 
encoding for Ctla4, a gene that transmits an inhibitory signal to 
T-cells (Delacher et al., 2017).

miRNA Regulation
miRNAs are ≈22 nucleotides noncoding RNAs that post-
transcriptionally regulate the gene expression of their mRNA 
targets by binding to their 3'UTR. In the last decade, increasing 
knowledge about the role of the miRNAs that control specific 
transcriptomic programs has demonstrated the relevance of 
these epigenetic changes during the differentiation, development, 
and maturation of immune cells (Bissels et al., 2012; Mehta and 
Baltimore, 2016). For example, the differential expression of 
miR-155, let-7 and miR-21 may be implicated in altered long-
term HSCs proliferation (Gruber et al., 2009). The differential 
expression of cluster miR-99b-let-7e-miR-125a enhances long-
term HSCs self-renewal by conferring protection from apoptosis 
thanks to BCL-2 homologous antagonist/killer 1 (BAK1) being 
targeted by miR-125a (Guo et al., 2010). The expression of 
cluster miR-99a-let-7c-miR-125b promotes HSC differentiation 
by targeting TGF-ß signaling activators and WNT signaling 
repressors (Emmrich et al., 2014). In addition, TLR stimulation 
induces nuclear factor κß (NF-κß) that stimulates inflammamiR 
miR-146a which, in turn, is a TLR and cytokine signaling 
negative regulator by targeting TNF receptor-associated factor 
6 (TRAF6) and interleukin receptor-associated kinase 1/2 
(IRAK1/2) (Taganov et al., 2006). It is noteworthy that the 
polymorphisms in IRAK1/2 have been considered risk factors for 
autoimmune diseases, such as RA (Atabaki et al., 2017) and SS. 
Furthermore, the downregulation of miR-146 brings about the 
increased secretion of cytokines from hematopoietic progenitors 
(Zhao et al., 2014), and a polymorphism in the 3'-UTR of IRAK1 
in the recognition region of miR-146a, which has been shown to 
be a factor of susceptibility of RA (Chatzikyriakidou et al., 2010).

The regulation of diverse innate immune cells in several 
differentiation stages has been reported (Kumar Kingsley and 
Vishnu Bhat, 2017). Macrophage development and immunity 
regulation as act as principal players miR-146a and miR-155 
(Taganov et al., 2006; O'Connell et al., 2007; Ghani et al., 2011). 
The development of natural killer cells (NK) to natural killer 
T-cells (NKT) is controlled by miR-150 (Bezman et al., 2011). 

Granulocytic differentiation is regulated by the levels of miR-223 
whose promoter is, in turn, regulated by either nuclear factor 
1 A-type (NFI-A) or CCAAT/enhancer-binding protein-α (C/
EBPα) binding (Fazi et al., 2005).

Lots of reviews have described the important role of miRNAs 
in adaptive immunity (Dooley et al., 2013; Marques et al., 2015; 
Mehta and Baltimore, 2016; Zhang et al., 2018). miRNAs play 
an essential role in B-cell development and function, and one 
example of such is miR-181a-5p (Georgantas et al., 2007; Jensen 
et al., 2013). Other examples include "inflamma-miRs" miR-155, 
miR-146a, and miR-150, which are key regulators of the B-cell 
function. The germinal center response involves miR-155 as an 
essential player for B-cell maturation and proliferation (Vigorito 
et al., 2013) and miR-146 deletion produces autoantibodies from 
B-cells (Boldin et al., 2011). Low expression miR-150 levels in 
pro-B cells inhibits the progression of pre-B cells differentiation 
in bone marrow, probably by the repression of its target gene, the 
MYB transcription factor (Xiao et al., 2007).

As in B-cell development and function, diverse and cell‐
specific expression patterns of miRNAs have been described 
in T-cell subsets (Monticelli et al., 2005; Wu et al., 2007; Sethi 
et al., 2013). Some relevant miRNAs found in lymphoid cell 
lines are miR-150, miR-155, miR-146a, and cluster miR-17-92. 
miR-150 controls early T-cell development inhibition via the 
downregulation of Notch (Ghisi et al., 2011). miR-155 inhibits 
Th2 cell proliferation by targeting c-Maf, which is a transactivator 
of IL-4 (Rodriguez et al., 2007). At the same time, miR-155 is able 
to lead the differentiation of the Th1 response (Banerjee et  al., 
2010) and plays a special role regulating the differentiation of 
Treg and T-helper 17 cells by targeting SOCS1 and controlling 
JAK/STAT signaling (Yao et al., 2012). Guerau-de-Arellano et al. 
have described how miR-128 and miR-340 are both implicated 
in the inhibition of Th2 cell lineage by directing differentiation 
to Th1 cells (Guerau-de-Arellano et al., 2011). miR-126 has been 
correlated with the promotion of Th2 cells (Mattes et al., 2009) 
and there are reports that miR-17-92 cluster deficiency reduces 
T-bet and IFN-γ expression, which are characteristic of Th1 
lineage, and promotes Treg cell differentiation (Jiang et al., 2011). 
Here it is stressed that T-bet plays key role in autoimmunity 
development. Finally, another important miRNA in different 
subsets of T-cells is miR-146a, whose increased expression has 
been observed in effector Th1 (Monticelli et al., 2005) and Treg 
(Cobb et al., 2006), but not in Th2 cells and naive CD4+ T cells 
(Monticelli et al., 2005). Furthermore, as in myeloid cells, miR-
146a regulates NF-kß signaling (Taganov et al., 2006) and targets 
STAT1 to thus control the Treg function (Lu et al., 2010).

Histone Modification
The conformational chromatin changes produced by histone 
post-translational modifications (PTMs) (e.g., acetylation, 
methylation, phosphorylation, etc.) could result in easy or 
blocked DNA accessibility. These reversible modifications have 
different consequences depending on the affected histone protein 
or specific residue, which is known as the histone code. Generally 
speaking, acetylation of histone lysine residues (H3K9, H3K14, 
H4K5, and H4K16) and methylation (H2BK5, H3K4, H3K36, and 
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H3K79); phosphorylation of histone H3 threonine 3 (H3T3) and 
serine (H3S10 and H3S28), as well as of histone 4 serine 1 (H4S1) 
and H2BK120 ubiquitinylation, are marks of open chromatin that 
increase DNA accessibility to transcription factors and produce 
increased gene expression. On the contrary, other marks, like the 
methylation (specifically di-methylation and tri-methylation) of 
H3K9, H3K27, and H4K20, the ubiquitination of H2AK119, and 
the sumoylation of H2AK126, H2BK6, and H2BK7, are associated 
with compacted chromatin and gene repression. In contrast to 
DNA methylation and miRNA regulation, fewer studies have been 
conducted into histone modifications in immune cells because 
of their relative complexity and the difficulty to transfer them to 
clinical practice. However, alterations of different histone PTMs, 
in polycomb repressive complexes, and also in histone modifying 
enzymes, have been described in immune system development 
and immune disorders (Loizou et al., 2009; Wilting et al., 2010; 
He et al., 2013b; Vidal and Starowicz, 2017; Di Carlo et al., 2018). 
Chen and coworkers described how the histone H3 lysine 79 di/
trimethylated (H3K79me2/3) modifications by the disruptor of 
telomeric silencing-1-like (Dot1l) methyltransferase at the Il6 and 
ifnb1 promoters are abundant in active macrophages (Chen et al., 
2018). Kdm6a demethylase promotes Il6 and ifnb1 overexpression 
in primary macrophages by lowering the H3K27me2/3 levels at 
their promoters (Li et al., 2017b). B-cell activation increases the 
levels of H3K4me3, H3K9ac, and H3K14ac in the promoter region 
of activation-induced cytidine deaminase enzyme (AID) by 
inducing the DNA cleavage of the regions in the immunoglobulin 
heavy chain (IgH) locus during class-switch recombination (CSR) 
(Chowdhury et al., 2008). H3K4me3, H3K9ac, H3K14ac, and 
H4K8ac are apparently essential for somatic hypermutation in 
AID target loci (Begum et al., 2012). Increased marks of H3K4me3 
have been found in the Ifng promoter in Th1 cells and in the Il4 
promoter in Th2 cells, which are characteristic of each lineage, 
while consistently increased repressive marks of H3K27me3 
have been found in both the Ifng promoter in T-helper Th2 cells 
and the Il4 promoter in T-helper Th1 cells (Wei et al., 2009). In 
CD8+ cytotoxic T-cells, the Ifng promoter displayed decreased 
H3K27me3 levels compared to naive CD8+ T-cells, but H3K4me3 
and H3K9ac increased, which are active epigenetic marks (Denton 
et al., 2011).

In a study performed in 21 autoimmune diseases, genetic and 
epigenetic data were combined to obtain a more comprehensive 
view of the etiology of these autoimmune diseases. By using 
chromatin immunoprecipitation (ChIP) data for H3K27ac, a 
mark of active enhancers and promoters, the authors elucidated 
the role of the SNPs detected in the genetic analysis by combining 
the results with those obtained in the ChIP study, and were able 
to link disease-associated SNPs with active enhancers (Farh et al., 
2015). This example illustrates the utility of histone modification 
information for clinical research, specifically to know how the 
study of epigenetic regulation in rare autoimmune-related 
disorders can help us to completely elucidate the intricate and 
complex landscape of epigenetic control in the immune system. 
Thus, we herein describe how epigenetic alterations are linked 
to SS and RA in an attempt to identify special the relevant 
epigenetic mechanisms underlying the physiopathology of these 
autoimmune diseases (Table 2).

SJÖGREN SYNDROME
Sjögren syndrome (SS; Disease identification number: 
OMIM:270150 and ORPHA:289390) is a chronic autoimmune 
disorder considered a rare disease, characterized by salivary and 
lacrimal glands being affected, which lead to dry eyes and dry 
mouth, expose the oral cavity to infections, caries, candidiasis, and 
imply musculoskeletal pain. SS may occur alone as primary SS or 
as secondary SS in association with other autoimmune diseases 
like systemic lupus erythematosus (SLE) or RA. Primary SS 
prognosis is not favorable and is linked to the onset of respiratory 
or kidney failure. However, secondary SS is characterized by 
keratoconjunctivitis and xerostomia, but is always associated 
with other autoimmune disorders. Therefore, prognosis depends 
strictly on the primary autoimmune pathology (He et al., 2013a). 
The problem lies in the presence of the lymphocytic infiltration 
of exocrine glands and other organs, together with the presence 
of various autoantibodies [reviewed in (Kapsogeorgou and 
Tzioufas, 2016); Table 1]. Patients with SS are at higher risk of 
developing lymphoma and primary liver cirrhosis and can, in 
some cases, develop non-Hodgkin's lymphoma (Pagano et al., 
2013; Ciechomska and O'Reilly, 2016; Vivino, 2017). The exact 
cause of SS is unclear, but several lines of evidence suggest a wide 
array of mechanisms including the dysregulation of the immune 
system which can destroy exocrine glands, as consequence 
of the production of chemokines by epithelial cells which 
attract T cells and dendritic cells producing an unappropriated 
immune response in the acinar and ductal epithelial cells 
(Nordmark et al., 2006). Moreover, genetic susceptibility and the 
contribution of epigenetic factors in the SS pathophysiology have 
been also proposed. Genes IRF5 (interferon regulatory factor 5), 
CXCR5 (C-X-C chemokine receptor type 5), TNIP1 (TNFAIP3-
interacting protein 1), IL12A (interleukin-12 subunit alpha), 
BLK (B lymphoid tyrosine kinase), and STAT4 (signal transducer 
and activator of transcription 4) have been proposed in several 
studies as gene candidates for SS susceptibility (Lessard et al., 
2013; Burbelo et al., 2014). Genome-wide and epigenome-wide 
association studies have been performed to identify the genes 
and epigenetic marks involved in SS (Low and Witte, 2011; 
Konsta et al., 2014).

The DNA methylation of immune cells is a key regulatory 
mechanism that underlies SS. Less global DNA methylation in 
salivary gland epithelial cells (SGECs) has been observed and 
linked to decreased DNMT1 and increased GADD45α (Thabet 
et al., 2013). The DNA methylation levels of SGECs have been 
inversely correlated with SS severity and B-lymphocyte infiltration. 
The global DNA methylation levels have been reported to increase 
in the SGECs of SS patients after administering the anti-CD20 
monoclonal antibody rituximab (Devauchelle-Pensec et al., 2007; 
Thabet et al., 2013). The hypomethylation of the CD70 promoter 
in CD4+ T-cells brings about CD70 gene expression (Yin et al., 
2010). CD70 is a B-cell costimulatory molecule that interacts 
with CD27 during B- and T-cell contact by promoting plasma cell 
differentiation and IgG production and, therefore, contributes to 
the immunological disarrangement and autoimmune response in 
SS. Otherwise, the hypermethylation of the FOXP3 promoter leads 
to lower FOXP3 expression, mRNA, and protein levels in the CD4+ 
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T-cells of SS (Yu et al., 2013). Low DNA methylation levels in minor 
salivary glands generate an increased KRT19 gene expression 
by producing elevated levels of epithelial protein cytokeratin-19 
(CK-19), while hypermethylation has been associated with low 
protein CK-19 levels. A therapy conducted with DNMT inhibitor 
5-azacytidine has increased KRT19 gene expression and CK-19 
protein levels (Konsta et al., 2016a), which demonstrates that DNA 
methylation is a key player in the control of the expression of both 
genes. A recent genome-wide DNA methylation study conducted in 
CD19+ B-cells and minor salivary glands has identified prominent 
hypomethylation sites of interferon (INF)-regulated genes, such as 
MX1, IFI44L, and PARP9. The hypomethylation of ING-regulated 
genes in SS B-cells brought about an increase in their gene 
expression, although an increase in OAS2 gene expression took 
place in minor salivary glands (Imgenberg-Kreuz et al., 2016). 
The hypomethylation of some other ING-regulated genes, such as 
STAT1, IFI44L, USP18, and IFITM1, has been reported (Altorok 
et al., 2014). The hypomethylation of these genes is congruent 
with the IFN response activation observed in SS patients. Altorok 

et al. have also reported that transcription factor gene RUNX1 is 
hypermethylated in patients with SS and regulates the maturation 
of hematopoietic stem cells (Okuda et al., 2001; Altorok et al., 2014) 
(Figure 1). RUNX1 has been associated with cancer predisposition 
(Asou, 2003; Kundu et al., 2005; Schlegelberger and Heller, 2017), 
which suggests a possible connection to lymphoma predisposition 
in SS patients. A recent study by Cole et al. has demonstrated 
the hypomethylation of PSMB8 and TAP1, which increased the 
frequency of antigen-presenting cells in labial salivary gland tissues 
of SS patients (Cole et al., 2016). Moreover, the hypomethylation 
of SSB gene promoter 1 has been observed in the SGECs of SS 
patients with SSB/La autoantibodies compared to those from anti-
SSB/La-negative patients (Konsta et al., 2016b).

miRNAs are dysregulated in SS. A reduction in cluster 
miR-17-92 (miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, 
and miR-92a-1) has been observed in the salivary glands 
of patients with SS (Alevizos and Illei, 2010). This cluster is 
involved in cell cycle, apoptosis, immune response, and other 
relevant cellular processes (Mogilyansky and Rigoutsos, 2013). 

TABLE 2 | Epigenetic Changes in RA and SS.

Disease DNA methylation Histone PTMs miRNAs

RA ↓ RASFs, PBMCs and T cell (Corvetta et al., 
1991; Karouzakis et al., 2009; Liu et al., 2011; 
Richardson et al., 1990)
↓ Synoviocytes (Nakano et al., 2013)
↓ IL6R, CAPN8 and HOXA11 genes in RASFs 
and ↑ DPP4 and HOXC4 in RASFs (de la Rica 
et al., 2013).
↓ IL-6 promoter in PBMCs (Ishida et al., 2012).
↑ IL-10 promoter in PBMCs (Fu et al., 2011).
↓ CXCL12 promoter in RASFs (Karouzakis 
et al., 2011).
↑ DUSP22 gene and ↓ GALNT9 gene in T cells 
(Glossop et al., 2014).
↑ CTLA-4 promoter in Treg cells (Cribbs et al., 
2014.)
↑ EBF3 and IRX1 genes in RASFs (Park et al., 
2013).

↑ H3 acetylation in synovial fibroblasts (Wada 
et al., 2014)
↑ HDAC1 levels in synovial tissues (Hawtree 
et al., 2015; Horiuchi et al., 2009; Kawabata 
et al., 2010)
↑ HDAC3 in fibroblast-like synoviocytes 
(Angiolilli et al., 2017)
↑ HDAC activity in synovial tissue (Huber et al., 
2007)

↑ miR-24, miR-26a, and miR-125a-5p in plasma 
(Murata et al., 2013).
↑ miRNA-146a and ↓ miR-363 and miR-498 in 
CD4+ T cells (Li et al., 2010).
↑ miR-146a in PBMCs and synovium (Niimoto 
et al., 2010).
↑ miR-155 in PBMCs (Li et al., 2013).
↓ miR-146a and miR-155 in Treg cells (Zhou 
et al., 2015).
↑ miR-346 in RASFs (Semaan et al., 2011).
↑ miR-18a in RASFs (Trenkmann et al., 2013).
↓ miR-21-5p in Treg cells of RA (Dong et al., 
2014).
↓ miR-23b in RASFs (Zhu et al., 2012).
↑ miR-126a in CD4+ T cells (Yang et al., 2015).

SS ↓ Type I IFN pathway genes promoter in CD19+ 
B cells (Imgenberg-Kreuz et al., 2016)
↓ CD70 promoter in CD4+ T cells (Yin et al., 
2010)
↑ FOXP3 promoter in CD4+ T cells (Yu et al., 
2013)
↓ STAT1, IFI44L, USP18, and IFITM1 promoter 
in naive CD4+ T cells (Altorok et al., 2014)
↓ PSMB8 and TAP1 promoter in labial salivary 
gland (Cole et al., 2016)
↓ KRT19 promoter in minor salivary glands 
(Konsta et al., 2016b, 2016a)
↓ global DNA methylation in SGECs (Thabet 
et al., 2013)

↑ H3K27ac in promoters and H3K36me3 in 
enhancers of B cells and monocytes (Konsta 
et al., 2015)
↑ H3K4me1, H3K36me3 and H3K27ac at 
enhancer regions in PBMCs (Imgenberg-Kreuz 
et al., 2016)

↑ miR-146a/b in PBMCs (Zilahi et al., 2012)
↑ miR-146 and ↓ miR-155 in PBMCs (Shi et al., 
2014)
↓ miR-17, miR-18a, miR-19a, miR-20a, miR-
19b-1, and miR-92a-1 in salivary glands (Alevizos 
and Illei, 2010)
↑ miR-34b-3p, miR-4701-5p, miR-609, miR-300, 
miR-3162-3p, and miR-877-3p in monocytes 
(Williams et al., 2016)
↑ miR-16a in labial salivary gland (Wang et al., 
2018)
↑ miR-155-5 p, miR-222-3p, miR-146a-5p in 
CD4+ T and ↑ miR-28-5p in B lymphocytes 
(Wang-Renault et al., 2018)
↓ let-7d-3p, miR-30c-5p, miR-378a-3p and 
in CD4+ T and ↓ miR-378a-3p, miR-26a-5p, 
miR-30b-5p and miR-19b-3p in B lymphocytes 
(Wang-Renault et al., 2018)
↑ miR-181a-5p in PBMCs and SGECs (Peng 
et al., 2014; Wang et al., 2018)
↑ miR-155 in PBMCs and SGECs (Le Dantec 
et al., 2012; Pauley et al., 2011)

↑ means that it is up-regulated. ↓ means that it is down-regulated.
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As previously described, this cluster is relevant in lymphoid 
cell lines as it activates the characteristic expression programs 
of the Th1 lineage (i.e. T-bet and IFN-γ) and promotes Treg 
cell differentiation. Another study has observed increased 
levels of miR-146a, which regulates the innate immune 
and inflammatory response by producing the repression of 
IRAK1 and increased TRAF6 gene expression which, in turn, 
promote the NF-κB target genes expression in the peripheral 
mononuclear cells of SS patients (Zilahi et al., 2012). Conversely, 
Williams et al. have reported that miR-34b-3p, miR-4701-5p, 
miR-609, miR-300, miR-3162-3p, and miR-877-3p increase 
in SS monocytes (Figure 1). This miRNA profile revealed the 
broadest coverage of the predicted targets in the canonical 
TGFβ signaling pathway. Thus, their high levels may suppress 

this signaling pathway and direct the balance to the pro-
inflammatory interleukin-12 and Toll-like receptor/NF-κB 
pathways (Williams et al., 2016). A recent study has detected the 
high expression of inflamma-miRs miR-155-5 p, miR-222-3p, 
miR-146a-5p, and miR-28-5p in CD4+ T-cells and miR-222-3p 
CD19+ B-cells, and the low expression of let-7d-3p, miR-
30c-5p, and miR-378a-3p in CD4+ T-cells, and of miR-26a-5p, 
miR-30b-5p, and miR-19b-3p in CD19+ B-cells (Wang-Renault 
et al., 2018). As mentioned above, inflamma-miRs miR-155 
and mir-146a inhibit Th2 proliferation and promote the Th1 
response (Figure 1). Furthermore, miR-155 also promotes the 
differentiation and function of Th17 and Treg differentiation 
(Monticelli et al., 2005; Cobb et al., 2006; Taganov et al., 2006; 
Rodriguez et al., 2007; Banerjee et al., 2010; Yao et al., 2012). 

FiGURE 1 | Epigenetic mechanisms in immune cells differentiation and function in arthritis rheumatoid (AR; orange boxes) and Sjögren syndrome (SS; blue boxes). 
In the CD19+ B-cells of SS patients, type I IFN genes, such as genes MX1, IFI44L, and PARP9, are hypomethylated (↓ Met), which agrees with the hypomethylation 
of some other IFN-γ-regulated genes (e.g. STAT1, IFI44L, USP18, and IFITM1) in CD4+ T-cells and with the IFN response activation observed in these patients. 
Moreover, low levels (↓) of miR-26a-5p, miR-30b-5p, and miR-19b-3p and high miR-222-3p levels (↑) are reported in the CD19+ B-cells of SS patients. Low 
levels miR-30b-5p bring about an increase of the B-cell activating factor (BAFF) and autoantibody production. The hypomethylation of the CD70 promoter in the 
CD4+ T-cells of SS patients leads to the increased expression of the CD70 gene, which interacts with CD27 during B- and T-cell contact by promoting plasma cell 
differentiation and IgG production. The hypermethylation (↑ Met) of the RUNX1 gene in SS regulates the maturation of hematopoietic stem cells. The high expression 
of inflamma-miRs miR-155-5 p, miR-222-3p, and miR-146a-5p and the low expression of let-7d-3p, miR-30c-5p, and miR-378a-3p are described in CD4+ T-cells. 
ImmflamamiRs miR-155 and mir-146a inhibit Th2 proliferation and promote the Th1 response. Furthermore, miR-155 also promotes the differentiation and function 
of Th17 and Treg. The hypermethylation of the FOXP3 promoter lowers the FOXP3 expression in the CD4+ T-cells of SS and is characteristic of the differentiated and 
functional Treg. The hypermethylation of the DUSP22 gene and the hypomethylation of the GALNT9 gene in CD4+ T-cells are implicated in the IL-6/STAT3-mediated 
signaling pathway by contributing to autoimmunity and promoting the pro-inflammatory Th17 cells differentiation in RA patients. High inflamma-miR miRNA-146a 
levels and low miR-363, miR-21-5, and miR-498 levels are reported in the CD4+ T-cells of RA patients. Low miR-21-5p levels promote Th17 cell differentiation, 
while suppressing Treg development. Furthermore, high miR-126a levels inhibit DNM1I which, in turn, produces the hypomethylation of CD11a and CD70 by 
increasing their expression and promoting the autoimmune response. The methylation of the CTLA4 promoter inhibits Treg activity in RA. In contrast to the miRNA 
levels observed in the CD4+ T-cells of RA patients, miR-146a and miR-155 are lower in Treg cells after T-cell stimulation. miR-146a regulates NF-kß signaling and 
targets STAT1 by thus controlling the Treg function. Hence, the low levels of this miRNA bring about the inhibition of Treg differentiation and function. The differential 
methylated sites located in the MHC region are described in the CD14+ monocytes of RA patients. Moreover, the levels of miR-34b-3p, miR-4701-5p, miR-609, miR-
300, miR-3162-3p, and miR-877-3p are higher in the monocytes of SS patients, which may inhibit the TGFβ signaling pathway. Thus, an unbalanced differentiation 
takes place from the CD4+ T-cells to the Th1 and Th17 cells, which promotes pro-inflammatory pathways and increases autoantibody production in both diseases.
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This result agrees with other studies, which have observed how 
miR-155 increases in the peripheral blood mononuclear cells 
(PBMCs) and SGECs of SS patients (Pauley et al., 2011; Le 
Dantec et al., 2012). Conversely, Shi et al. have noted high miR-
146a levels and low miR-155 levels in the PBMCs of SS patients 
(Shi et al., 2014). It is worth mentioning that, as described in the 
Introduction, miR-146a and miR-155 are important regulators 
of B- and T-cell differentiation, proliferation and function, and 
both have been considered two key modulators in the control 
of the innate and adaptive immune response (Gottfried et al., 
2012). Furthermore, low miR-30b-5p levels bring about an 
increase in the gene expression of the B-cell activating factor 
(BAFF) in the CD19+ cells of SS patients (Wang-Renault et al., 
2018). High BAFF levels have been described in the serum, 
salivary gland B-cells, T-cells, and epithelial cells of these 
patients (Lavie et al., 2004; Daridon et al., 2007). In addition, 
these increased levels correlate with autoantibody production 
and, accordingly, mice models with high BAFF levels show 
phenotypic SS features (Mackay et al., 1999; Mariette, 2003).

Remarkably, increased levels of miR-181 and miR-16a in the 
labial salivary glands and PBMCs of SS patients are associated 
with the degree of inflammation in SS (Wang et al., 2018), 
which suggests that both miRNAs are biomarker candidates 
for monitoring the inflammatory course of SS. miR-181a-5p 
is associated with antigen sensitivity and the dysfunction of 
exocrine glands. Peng et al. have observed increased miR-
181a-5p levels in the PBMCs of SS (Peng et al., 2014). This 
miRNA has been described to target the muscarinic receptor 
3 gene (CHRM3)(Whisnant et al., 2013), whose variants have 
been associated with SS (Appel et al., 2011). Accordingly, 
autoantibodies against CHRM3 have been detected in the serum 
of SS patients (Gao et al., 2004). Other targets of miR-181a-5p 
are genes TRIM21 and SSB, which encode for the 52kDa subunit 
of Ro/SSA ribonucleoprotein and the La/SSB ribonucleoprotein, 
respectively (Yang et al., 2016). SSA/Ro and SSB/La are 
regulated by miRNA let-7b, which is repressed in the SGECs 
of SS (Kapsogeorgou et al., 2011). Autoantibodies against these 
proteins have been detected in the serum, saliva, salivary gland 
epithelia, and B-cell infiltrating salivary glands of SS patients 
(Horsfall et al., 1989; Salomonsson and Wahren-Herlenius, 2003; 
Routsias and Tzioufas, 2007).

Finally, some authors have studied histone modifications 
at relevant genomic loci linked to SS risk variants to identify 
the critical role played by these variants in the disease. Active 
histone post-translational marks (e.g. H3K4me2, H3K4me3, 
and H3K9Ac) at the promoters of selected risk variants in 
B-cells have been observed in contrast to epithelial cells 
and monocytes. Active marker H3K27Ac and active marker 
H3K36me3 are enriched in B-cells and monocytes, in contrast 
to epithelial cells (Konsta et al., 2015). A recent study has 
reported an increase in the enhancer regions (H3K4me1 and 
H3K27ac) associated with the CpG sites hypomethylated in 
the whole blood of SS patients, while hypermethylated sites are 
underrepresented in these regions and also enriched for active 
post-translational mark H3K36me3 (Imgenberg-Kreuz et al., 
2016). These results reveal that histones PTMs are also key 
components in the regulation of specific variants, and they also 

play a critical role in the genetic background and the risk of 
developing SS. Therefore, further studies should be undertaken 
to ascertain the role of histone PTMs in the regulation of the 
genetic risk factors linked to SS.

RHEUMATOiD ARTHRiTiS
RA (Disease Identification Number: OMIM: 180300) is a 
systemic autoimmune inflammatory disease characterized 
by chronic joint inflammation and structural damage, 
with extra-articular manifestation, such as rheumatoid 
nodules, pulmonary involvement or vasculitis, and systemic 
comorbidities (Smolen et al., 2016). RA presents a large number 
of associated autoantibodies [reviewed in (Steiner, 2007) and 
(Conrad et al., 2010); Table 1]. The autoantibodies produced 
by the action of B- and T-cells in the synovial membrane 
promote the destruction of joints, suggesting a particular 
osteoimmunological interaction in RA (Okamoto and 
Takayanagi, 2011). Macrophages and granulocytes generate 
pro-inflammatory cytokines, chemokines, and ROS in synovial 
fluid by increasing the inflammatory response (Kinne et al., 
2007). The origin of RA is unclear, but is considered to be a 
combination of genetic predisposition and epigenetic factors. 
Some of the genetic factors of RA are associated with the alleles 
of HLA-DR4, DR14, and some DR1 beta chains (Smolen et al., 
2016), which are polymorphisms found in the gene of protein 
tyrosine phosphatase and nonreceptor type 22 (PTPN22) that 
regulate the activity of T- and B-lymphocytes, as well as the 
polymorphisms of the genes that regulate cytokine production 
(TNF and STAT4) (Conigliaro et al., 2017).

One of the most important epigenetic factors in RA is DNA 
methylation, which affects immune-related genes and, therefore, 
the immune response. Glossop et al. have observed differential 
DNA methylation in T- and B-cells, and also in synovial fibroblasts 
in early RA stages (Klein and Gay, 2015; Glossop et al., 2016). 
Global DNA hypomethylation has been found in rheumatic 
arthritis synovial fibroblasts (RASFs), PBMCs, and more 
specifically in the T-cells obtained from RA patients (Richardson 
et al., 1990; Corvetta et al., 1991; Karouzakis et al., 2009; Liu et al., 
2011). The DNA methylation studies performed by Liu et al., 
by means of Infinium 450K methylation array (Illumina) from 
sorted CD14+ monocytes of RA patients and controls, found nine 
differential methylated sites located in the MHC region, which 
suggests that monocytes are more proximal to the pathogenic 
cell type (Liu et al., 2013). Here it is necessary to stress that the 
MHC class II gene expression in the macrophages that came 
from monocytes has been linked to RA progression (Mueller 
et al., 2007). Other authors have observed the hypomethylation 
of the pro-inflammatory cytokine IL6 promoter and the 
hypermethylation of the anti-inflammatory IL10 gene promoter 
in the PBMCs of RA patients (Fu et al., 2011; Ishida et al., 2012). 
Interestingly, reduced IL-10 production should contribute to the 
balance between CD4+ Th2 cells being lost to favor CD4+ Th1 
cell function (Fiorentino et al., 1989; Said et al., 2010) (Figure 1). 
In line with this, IL-10 generally suppresses the proliferation 
and cytokine production of all T-cells, as well as the activity of 
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macrophages. Despite the results of Fu et al. (Fu et al., 2011) 
showing the hypermethylation of the anti-inflammatory IL10 
gene in the PBMCs of RA patients, the results of Hernández-
Bello et al. found an aberrant overexpression of the IL10 gene in 
these patients (Hernández-Bello et al., 2017).

An alteration to the methylation of other genes has also 
been studied. Glossop et al. found the hypermethylation of the 
DUSP22 gene and the hypomethylation of the GALNT9 gene 
in the T-cells of RA (Glossop et al., 2014). GALNT9 codifies 
for an important glycosyltransferase, which is essential in the 
first step mucin biosynthesis. Mucin is involved in RA (Ishino 
et al., 2010) and induces IL-6 expression in the PMBC of RA 
patients (Hamaguchi et al., 2011). DUSP22 codifies for a tyrosine 
phosphatase that negatively regulates the IL-6/STAT3-mediated 
signaling pathway. It is noteworthy that IL-6 is a pivotal cytokine 
in RA. It contributes to autoimmunity (Fonseca et al., 2009) 
and promotes pro-inflammatory Th17 cells differentiation 
(Volpe et al., 2008; Yang et al., 2008). The methylation of the 
CTLA4 promoter inhibits the expression and activation of 
the indoleamine 2,3-dioxygenase pathway (IDO pathway) in 
the Treg cells of RA (Cribbs et al., 2014). This pathway is an 
important regulatory checkpoint that influences Treg activity by 
stabilizing and augmenting the immunosuppressive phenotype, 
and by preventing Treg reprogramming into nonsuppressive T 
helper-like cells (Figure 1). A genome-wide study has shown the 
hypomethylation of genes IL6R, CAPN8, and HOXA11, and the 
hypermethylation of DPP4 and HOXC4 in RASFs (de la Rica et al., 
2013). The hypomethylation of the chemokine CXCL12 promoter 
leads to an increase in matrix metalloproteinases which, in turn, 
cause the destruction of joints in RASFs (Karouzakis et al., 2011). 
The hypermethylation of genes EBF3 and IRX1 in RASFs has 
also been observed (Park et al., 2013). Nakano et al. presented 
a series of hypomethylated genes which clustered in the key 
pathways related to immune mechanisms, such as cell migration, 
focal adhesion, cell adhesion, trans-endothelial migration, and 
extracellular matrix interactions (Nakano et al., 2013). It is 
worth mentioning that DNA methylation dysregulation in RA 
could be a consequence of metabolic alterations. For example, 
increased levels of PMFBP1 (polyamine-modulated factor 
1 binding protein 1) and SSAT1 (spermidine synthase) in 
RASFs promote polyamines metabolism, which may increase 
S-adenosyl methionine (SAM) consumption and, in turn, 
decrease the substrate required for DNA methylation in RASFs 
cells (Karouzakis et al., 2012). Some treatments used in RA 
patients, such as methotrexate (MTX), have been demonstrated 
to produce demethylation in FOXP3, which leads to the 
accumulation of Treg cells (Cribbs et al., 2015). Moreover, due to 
the changes in the methylation in FOXP3, Wieczorek et al. have 
suggested analyzing the methylation of FOXP3 as a new method 
for counting Treg, evaluating disease status and identifying 
patients' responses to therapy (Wieczorek et al., 2009). Another 
study has shown that MTX can reverse the hypomethylated 
status and restore methylation levels once again by reducing the 
expression of the enzymes involved in demethylation in PBMC 
(de Andres et al., 2015).

More studies have demonstrated that miRNAs play an 
important role in RA. MiR-24, miR-26a, and miR-125a-5p are 

overrepresented in the plasma of RA patients, which suggests 
their feasible utility as biomarkers (Murata et al., 2013). Li et 
al. have observed an increase in miRNA-146a that correlated 
with TNF-α levels and with low levels of miR-363 and miR-
498 in CD4+ T-cells (Li et al., 2010). Indeed as we indicate in 
the Introduction and describe in the SS section, miR-146a has 
been proposed as a key regulator of the immune system because 
it can control the secretion of cytokines, B-cell function, and 
NF-kß signaling, among others. Increased miR-146a levels are 
associated with IL-17 expression in the PBMCs and synovium 
of RA patients (Niimoto et al., 2010). In contrast, miR-146a 
and miR-155 lower in Treg cells after T-cell stimulation in RA 
patients (Zhou et al., 2015). miR-155 inhibits the transcript 
of SOCS1 and produces the upregulation of both TNF-α and 
interleukin IL-1β in the PBMCs of RA (Li et al., 2013). Other 
miRNAs have also been found to be involved in RA. For example, 
miR-346 controls TNF-ß synthesis in RASFs by tristetraprolin 
stabilization (Semaan et al., 2011). Tristetraprolin (also known 
as the zinc finger protein 36 homolog) is a protein that binds to 
AU-rich elements in the 3'-untranslated regions of the mRNAs of 
cytokines and promotes their degradation.

miR-18a plays an important role in the TNF-α-mediated 
signaling pathway through a feedback loop in the NF-κB signaling 
in RASFs (Trenkmann et al., 2013). Dong et al. have described 
a high Th17/Treg cells ratio in the PMBCs of RA patients and 
they have also found reduced expression levels in miR-21-5p in 
the CD4+ T-cells of these patients. Low miR-21-5p levels may 
promote Th17 cell differentiation while suppressing Treg cell 
development during chronic inflammation in RA (Dong et al., 
2014) (Figure 1). Another study has reported that miR-23b show 
low levels in RASF. It also reported that this miRNA suppresses 
IL-17-associated autoimmune inflammation by targeting TAB2, 
TAB3, and IKK-α and that IL-17 is also a negative regulator 
of miR-23b expression (Zhu et al., 2012). This agrees with the 
increased IL-17 levels described in RA patients (Zhu et al., 2012), 
and also with a high ratio of Th17 cells (Dong et al., 2014), which 
are the main source of this cytokine. In addition, the increase in 
miR-126a promotes the inhibition of DNMTI, which produces 
the hypomethylation of the promoters of CD11a and CD70 and, 
in turn, their expression increases in the CD4+ T-cells of RA (Yang 
et al., 2015). This mechanism may have similar consequences 
to those that occur in SS, where the hypomethylation of CD70 
in B-cells has been observed and, therefore, contributes to the 
autoimmune response.

Very few research studies have delved into the role of the 
PTMs of histones in specific gene or genomic regions in RA. 
Huber et al. have described an increase in the shifted balance of 
histone acetylase/histone deacetylase activity to hyperacetylation 
in the synovial tissue samples of RA patients (Huber et al., 
2007). These results agree with increased IL-6 production in the 
RASFs of RA patients, where elevated H3ac and H3K4me3 levels 
were found in the proximal IL-6 promoter (Wada et al., 2014). 
Kawabata et al. have described increased histone deacetylase 1 
(HDAC1) levels in the synovial tissues in RA patients, which have 
been correlated with a high cytoplasmic TNF-α concentration 
(Horiuchi et al., 2009; Kawabata et al., 2010). In agreement with 
the previous results, the inhibition of HDAC1 in RASFs and in a 
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mouse collagen-induced arthritis model brought about changes 
in the expression of the genes related to proliferation, migration, 
and inflammation by, therefore, improving the RA phenotype 
(Hawtree et al., 2015). Furthermore, HDAC3 activity is necessary 
for type I interferon (IFNI) production and the subsequent 
activation of the signal transducer and activator of transcription 
1 (STAT1) in fibroblast-like synoviocytes (FLS) (Angiolilli et al., 
2017). In contrast, HDAC5 expression is suppressed in RASFs 
by inflammatory cytokines, such as IL-1β and TNF-α, which 
produce interferon regulatory factor (IRF1) nuclear localization 
and the promotion of IRF1-regulated genes (Angiolilli et al., 
2016). Finally, PADI4 is able to deiminate the arginine residues 
of histones by generating citrulline residues, and an increased 
PADI4 expression has been observed in RA synovial membranes 
(Chang et al., 2009).

CONCLUSiONS
Recent research demonstrates the importance of epigenetics 
in the development of the most prevalent human autoimmune 
diseases because epigenetic dysregulation plays a relevant role 
in the pathophysiology of several autoimmune/inflammatory 
disorders, such as SS and RA (Table 2).

The increased expression of IFN-induced genes as 
a consequence of promoter hypomethylation has been 
demonstrated in the B-cells of SS patients. The hypomethylated 
IFNG promoter in pro-inflammatory T-cells (CD4+CD28T− 
T-cells) has also been found in RA patients (Pieper et al., 
2014). Hypomethylation is apparently accompanied by the 
hyperacetylation of histones, which may contribute to the control 
of epigenetic programs in enhancer regions. miR-146a and miR-
155 appear as relevant epigenetic switches in both autoimmune 
disorders SS and RA. In particular, miR-146a is elevated in 
the PBMCs of both SS and RA (Table 2). This is particularly 
relevant because both miR-146a and miR-155 are recognized as 
"inflamma-miRs" in aging (Olivieri et al., 2013), a physiological 
process during which immunosenescence occurs (Fulop et al., 
2018). Therefore, it is noteworthy that both miRNAs can be used 
to monitor not only the inflammation status in SS and RA, but 
also as markers of dysregulated immunity. Hence, many studies 
have aimed to elucidate age-dependent changes in chromatin 
accessibility, DNA methylation, and histone modifications 
in immune cells, particularly in T-cells (Tserel et al., 2015; 
Moskowitz et al., 2017; Cheung et al., 2018). The implication of 
these epigenetic regulation mechanisms in aging will improve 
our understanding of the phenotypical variations observed in 
disease progression of both RA and SS patients.

The miR-181 and miR-16a signature measured in the 
PBMCs of SS patients seems more specific. Both miRNAs are 
associated with the degree of inflammation (Wang et al., 2018), 
which indicates the role played by both miRNAs as biomarker 
candidates to monitor SS progression.

A large number of epigenetic studies in RA and SS have 
been conducted in PBMCs or affected tissues (RASF or salivary 
glands). Conversely, accumulating evidence in different subsets of 
immune cells reveals specific changes in the epigenetic marks that 

regulate the differentiation and function of each subset of cells 
(Bock et al., 2012; Sethi et al., 2013; Avgustinova and Benitah, 
2016; Kumar Kingsley and Vishnu Bhat, 2017; Wu et al., 2018). 
Thus, it is reasonable to think that a more specific analysis of the 
epigenome in specific immune cell subsets should be carried out to 
unveil which type of immune cells is altered in these autoimmune 
diseases. This is an important fact because most epigenetic data 
have been obtained from bulk immune cell populations. However, 
in order to completely decipher the role of epigenetic mechanisms 
in autoimmune-related disorders, the whole epigenome needs to 
be elucidated. Single-cell technologies, such as mass cytometry 
or single-cell RNA sequencing, have revealed an unprecedented 
heterogeneity in different immune cell populations (Buenrostro 
et al., 2015; Cusanovich et al., 2015; Farlik et al., 2015). These 
strategies have allowed the whole methylome, chromatin 
regulation to be characterized by the ChIP-seq analysis, as 
well as the whole miRNome, which helps us to understand the 
pathogenesis of SS and RA by identifying biomarkers for disease 
management and predicting the long-term outcomes in these 
patients. For example, lymphoma is a long-term feature in about 
5% of SS patients (Theander et al., 2006).

Furthermore, in order to understand the complexity of 
immune-related disorders, we must consider not only the 
complexity of immune cell regulation and epigenetic programs 
established in immune cell subpopulations, but also the interaction 
of immune cells with other tissues. The tissue environment can 
influence genetic programs in immune cells, and it is obvious 
that environmental factors may affect the inflammatory pathways 
in both RA and SS. For this reason, another issue to consider is 
how environmental factors affect the epigenetic regulation in 
autoimmune diseases. It is known that a narrow range of risk 
factors has been associated with rheumatic diseases, and also 
with epigenetic changes (Klareskog et  al., 2006; Colafrancesco 
et al., 2016). In SS, factors such as stress, air pollution, vitamin D, 
or hormonal factors have been described as risk factors for this 
autoimmune disease to develop and progress (Colafrancesco 
et al., 2016). In RA, smoking is considered the commonest 
environmental risk factor to contribute to RA development and 
severity (Baka et al., 2009). Air pollution has been widely reported 
as an epigenetic modulator [see the review in (Li et al., 2017a)] and 
to increase the probability of developing systemic autoimmune 
rheumatic diseases such as SS (Bernatsky et al., 2016). Similarly, 
monocyte-specific smoking-associated DNA methylation patterns 
have been observed (Reynolds et al., 2017), which well matches an 
increased risk of RA development (Klareskog et al., 2011; Chang 
et al., 2014). Although many studies have related environmental 
factors to the development and/or progression of SS and RA, the 
actual mechanisms underlying these diseases are still unknown. 
Hence, epigenetic regulation could provide new pieces in the 
intricate puzzle of the environmental effects in SS and RA and, 
thus, more are needed to clarify how external factors can modify 
the epigenome in the SS and RA physiopathology contexts.

A lot of work is still to be done to improve the efficacy and 
safety of treatments against autoimmune diseases. However, the 
identification of the key epigenetic mechanisms and epigenetic 
switches controlling specific transcriptomic programs can 
provide new possibilities to elucidate the diagnosis of the 
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wide array of autoimmune disorders. Therefore, research that 
specifically focuses on elucidating the epigenetic control in 
specific subpopulations of immune cells will provide new 
insights into the pathogenesis of autoimmune diseases and will 
open up new ways to develop novel therapeutic approaches that 
target epigenetic mechanisms, such as DNA methylation, histone 
PTMs, and regulating miRNAs expression. HDAC inhibitors 
(HDACi) are proposed as a therapeutic strategy for RA (Hsieh 
et al., 2014; Cantley et al., 2015; Oh et al., 2017; Angiolilli et al., 
2018; Kim et al., 2018;). HDACi is a good therapeutic approaches 
because it helps to lower inflammation levels through vascular 
cell adhesion molecule-1 (VCAM), intercellular adhesion 
molecule-1 (ICAM), and E-selectin (ESEL) levels, which 
could contribute to immunosuppression (Inoue et al., 2006). 
Accordingly, the only clinical trial that has been tested is 
givinostat for juvenile idiopathic arthritis. Yet despite the benefits 
of this HDAC inhibitor, after a 12-week safety and efficacy assay 
(NCT00570661) (Vojinovic et al., 2011), a dose-finding study 
showed lack of efficacy (NCT0155745), which suggests that it 
should be used in conjunction with other treatments to improve 
the effect on patients. Moreover, more efforts should be made 
to further clarify the special contribution of epigenetics to the 
etiology of these immune-related disorders and how epigenetic-
based drugs can increase the therapeutic options for RA and SS.
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