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Abstract

Recent experimental evidence strongly supports that three-dimensional (3D) long-range

enhancer-promoter (E-P) interactions have important influences on gene-expression

dynamics, but it is unclear how the interaction information is translated into gene expression

over time (4D). To address this question, we developed a general theoretical framework

(named as a 4D nucleome equation), which integrates E-P interactions on chromatin and

biochemical reactions of gene transcription. With this equation, we first present the distribu-

tion of mRNA counts as a function of the E-P genomic distance and then reveal a power-law

scaling of the expression level in this distance. Interestingly, we find that long-range E-P

interactions can induce bimodal and trimodal mRNA distributions. The 4D nucleome equa-

tion also allows for model selection and parameter inference. When this equation is applied

to the mouse embryonic stem cell smRNA-FISH data and the E-P genomic-distance data,

the predicted E-P contact probability and mRNA distribution are in good agreement with

experimental results. Further statistical inference indicates that the E-P interactions prefer

to modulate the mRNA level by controlling promoter activation and transcription initiation

rates. Our model and results provide quantitative insights into both spatiotemporal gene-

expression determinants (i.e., long-range E-P interactions) and cellular fates during

development.

Author summary

Gene expression is an essential biological process in all organisms. Numerous experimen-

tal studies have reported that the long-range enhancer-promoter (E-P) interaction on

three-dimensional (3D) chromatin architecture plays important roles in regulating gene

expression and cell functions, but the quantitative and qualitative impact of E-P interac-

tion on gene expression over time is unclear. We develop a theoretically and numerically

efficient model (called the 4D nucleome equation) to couple E-P interaction with gene

expression and use this equation to characterize dynamic behavior. Then, we obtain the
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theoretical distribution of mRNAs and predict the gene expression profiles under E-P reg-

ulations. Interestingly, we find that E-P interactions can induce bimodal and trimodal

shapes of mRNA distribution. When applying this framework to mouse embryonic stem

cell data to investigate the dynamical behaviors of E-P interaction and gene expression,

we reproduce the experimentally measured E-P contact frequencies and mRNA distribu-

tions under different E-P interactions. Our results support the picture of an essential

mechanism for explaining phenotypic diversity and cellular decision-making.

Introduction

Gene expression is tightly related to three-dimensional (3D) genome conformation that may

change over 1D time [1–4]. Specific DNA sequences–promoters and enhancers–orchestrate

transcription in a highly complex and multilayered manner to ensure accurate spatiotemporal

gene expression [1–4]. Many experimental studies have shown the importance of the roles of

distal enhancers in ensuring reliable cell functioning and cellular decision-making [5–10].

However, the mechanism of how 3D chromatin organization (in particular 3D enhancer-pro-

moter (E-P) interactions) in time (4D) shapes gene-expression dynamics still remains elusive.

Hierarchic genomic structures support various possible E-P topologies and the connection

of upstream stochastic E-P interaction to downstream gene transcription [11–16]. Many

efforts have been made to explore the essential factors of E-P interaction affecting transcrip-

tion. Recent live-imaging measurements have provided clear evidence that E-P genomic dis-

tance effectively controls gene activities [6,10,17]. And a collection of experimental evidence

has established that the E-P interaction strength significantly impacts gene expression levels

[6,7,18,19]. For example, the sna shadow enhancer, whose strength is determined by chroma-

tin inheritance, generates more bursts than the sna primary enhancer in Drosophila embryos

[6], and the hormone or heavy metal exposure, which externally alters the E-P interaction

strength [20,21], boosts the mRNA level of c-Fos gene with the increase of dose concentrations

[18]. These experimental observations indicate that the E-P genomic distance and the E-P

interaction strength are important factors impacting gene expression profiles. However, bio-

logical experiments alone are not sufficient to unravel the complete picture of the dynamics of

E-P interaction-regulated gene expression, and it is necessary to develop biologically reason-

able mathematical models to investigate the underlying mechanism.

The conventional modeling of gene expression kinetics is based on simple models such as

the two-state model and multistate model [22–30], in which an implicit hypothesis is that

chromatin behavior is frozen. Recent work adds the effects of chromatin structure to the

model [10,31], but still ignores the spatiotemporal dynamic regulation of chromatin topologies

[31–35]. So far, we still lack a mechanistic mathematical model that couples stochastic chroma-

tin organizations and stochastic gene expression processes. Addressing this issue faces two

challenges. First, genomic structures are stochastic at almost every level of organization, and

this stochasticity is suggestively linked to gene transcription and finally affects transcriptional

outcomes [14,32]. Overall, the temporal disconnection, as well as the stochasticity of E-P topol-

ogy and gene expression, lies at the heart of a broad challenge in the physical biology of both

establishing a comprehensive theoretical framework of the information transmission from the

upstream chromatin organization to the downstream gene expression and forecasting mRNA

profiles from the dynamics of underlying molecular processes. Second, the regulation of gene

expression by the chromatin spatial structure is a multiscale system. Many experimental stud-

ies have indicated distinct timescale differences between upstream chromatin dynamics and
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downstream gene expression [36,37]. For instance, E-P interaction occurs on a timescale of

seconds to minutes [8,38,39], whereas the gene produces over a longer timescale compatible

with E-P interaction, precisely the timescale of minutes to hours as suggested in multiple stud-

ies [9,36,40].

Here, we developed a general theoretical framework (formulated as the so-called 4D

nucleome equation) to investigate how E-P interaction (characterized by E-P genomic distance

and E-P interaction strength) affects gene expression dynamics. Specifically, this framework

considered upstream chromatin motion on a fast timescale and downstream mRNA produc-

tion on a slow timescale as well as the temporal connection between the upstream and the

downstream. This framework involving space and time is referred as 4D gene expression

kinetics [41,42]. With the timescale separation method, we derived analytical mRNA distribu-

tion and studied how E-P interaction qualitatively impacts the characteristics of mRNA distri-

bution. Importantly, we found that the E-P interaction can flexibly regulate mRNA patterns by

inducing multiple shapes of mRNA distributions including bimodal distribution with two

non-origin peaks and even trimodal distribution. And our theoretical analysis and simulations

revealed a power-law scaling of gene expression levels in the E-P genomic distance. Finally, by

performing statistic inference on the mouse embryonic stem cells (mESCs) data, our frame-

work exhibited good predictions of mRNA distribution and E-P contact probability under dif-

ferent E-P interactions. We emphasize that our 4D nucleome equation provides a general

modeling framework for studying how chromatin dynamics affect gene expression kinetics

and our results suggest a possible mechanism for explaining phenotypic diversity and cellular

decision-making in realistic cases.

Materials and methods

In this section, we introduce a theoretical framework for predicting gene expression regulated

by long-range E-P interaction in 4D (Fig 1A). First, we model chromatin as a polymer [43–46]

discretized into a collection of successive monomers, and assume that there are N monomers

on chromatin, spatial positions of which are denoted by r = [r1,� � �,rN]T. Each monomer repre-

sents a segment of DNA, whose length depends on the levels of coarse-grained chromatin. Sec-

ond, we model the gene expression process as a discrete multistate model, and assume that the

gene has K different gene states (each state includes promoter’s state (ON or OFF) and the

number of mRNA), which altogether constitute the vector s = [s1,� � �,sK]T.

Fig 1. Schematic representation of gene expression regulated by E-P interaction. (A) E-P interaction in the cell nucleus plays a key role in

regulating gene expression. (B) A polymer model involving E-P interaction (the red spring with coefficient kEP) is proposed to simulate chromatin

dynamics, where r = [r1,� � �,rN]T represents monomers positions in 3D space, dG is E-P genomic distance, and dS = krE−rPk is E-P spatial distance.

(C) A link function vector θ = H(ds), where H is a function vector, bridges the temporal disconnection between upstream E-P topology and

downstream gene expression. (D) The two-state telegraph model is used to imitate gene expression, where s = [s1,� � �,sK]T is the vector of the gene’s

states and θ = [α,β,μ,δ] is the vector of state-switching rates.

https://doi.org/10.1371/journal.pcbi.1011722.g001
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4D nucleome equation governing probabilistic evolutionary behavior in

phase space

Let p(r,s;t) be a vector of the joint probability density functions that monomers are in position

r and the gene is in state s at time t. Specifically, pðr; s; tÞ ¼ ½pðr; s1; tÞ; � � � ; pðr; sK ; tÞ�T. Noting

pðr; s; tÞ ¼ pðr; tÞpðsjr; tÞ, we have

@pðr; s; tÞ
@t

¼
@pðr; tÞ
@t

pðsjr; tÞ þ
@pðsjr; tÞ

@t
pðr; tÞ: ð1Þ

On one hand, the motion of monomers has a continuous trajectory in the region O (a con-

nected and bounded domain). The derivative @pðr; tÞ=@t in Eq [1] can be formally written as

@pðr; tÞ=@t ¼ � rr � ½Fðr; s; tÞpðr; tÞ�, whererr is the gradient operator and F(r,s;t) is a veloc-

ity field. Next, if we consider isotropic diffusion and friction across the region of monomers’

positions, then F(r,s;t) takes a generalized Fokker–Planck approximation, i.e., F(r,s;t) = V(r,s;t)
−rr(Dlogp(r;t)), where the first term represents the deterministic part of the velocity field and

the second term is a stochastic ingredient of the velocity under isotropic diffusion with diffu-

sion coefficient D. We further assume that changes in gene state do not contribute to chroma-

tin motion, and V(r,s;t) can be approximated by V(r;t). Thus, we can obtain

@pðr; tÞ
@t

¼ � rr � ðVðr; tÞpðr; tÞÞ þ r
2

r ðDpðr; tÞÞ; ð2Þ

wherer2
r is the Laplace operator.

On the other hand, the stochastic gene expression process regulated by chromatin dynamics

can be modeled by the master equation of the form

@pðsjr; tÞ
@t

¼Wðr; tÞpðsjr; tÞ; ð3Þ

where W(r;t) is a monomer position-dependent state transition matrix, and the elements of W
are related to gene state switching rates and chromatin position.

We assume that tiny changes in monomers coordinates do not alter gene state, implying

that the derivative of conditional probability,rrp(s|r;t), approximately equals zero partly

because the time interval of gene state transition is generally longer than that of chromatin

motion [36]. Thus, substituting Eq [2] and Eq [3] into Eq [1] yields the following equation

@pðr; s; tÞ
@t

¼ � rr � ðpðr; s; tÞVðr; tÞ
T
Þ þ r2

rðDpðr; s; tÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

chromatin dynamics

þWðr; tÞpðr; s; tÞ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
gene� expression dynamics:

ð4Þ

The first two terms on the right-hand side of Eq [4] represent chromatin’s spatiotemporal

diffusion process. The first term is the deterministic component, and the second is the stochas-

tic component accounting for random fluctuations. The last term captures the gene states’ ran-

dom switching process. It should be noted that Eq [4] is a comprehensive description of the

gene expression process toward the 4D reality, so we called it the 4D nucleome equation. In

the Results section, we will derive the mRNA distribution based on Eq [4].

Stochastic model simulating trajectory evolutionary behavior in

configuration space

Modeling chromatin dynamics. Successive monomers in the chromatin are connected

with harmonic springs of stiffness kNN (Fig 1B). Each monomer represents a nucleosome or a
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DNA segment (this length does not affect our qualitative results to be obtained) with the 3D

position denoted by ri = (ri1,ri2,ri3), where i = 1,. . .,N. We employ one nucleosome to represent

an enhancer or promoter and posit that there are only one enhancer and one promoter on the

chromatin. To mimic E-P interaction and to simplify without loss of generality, we add a har-

monic spring with stiffness kEP between the enhancer and the promoter to materialize this

abstract concept.

Based on the above assumptions, we model the chromatin dynamics according to the Lan-

gevin equation dr ¼ Vðr; tÞdt þ
ffiffiffiffiffiffi
2D
p

dBðtÞ, which is equivalent to Eq [2], where B(t) is a vec-

tor of independent Brownian motions. And Vðr; tÞ ¼ � rrUðr; tÞ=g, where γ is the friction

coefficient and U(r;t) is the total potential of chromatin conformation. Note that

Uðr; tÞ ¼ UNNðr; tÞ þ UEPðr; tÞ, where without loss of generality, we set UNNðr; tÞ ¼

ð1=2Þ
XN� 1

j¼1
kNNðrj � rjþ1Þ

2
which represents the potential for the chain connection, and

UEPðr; tÞ ¼ ð1=2ÞkEPðrE � rPÞ
2

which represents the potential for the E-P interaction with E,

P2{1,� � �,N} representing the index of the monomer occupied by enhancer and promoter

respectively. We let dG = |E−P| represent the E-P genomic distance, which can be directly mea-

sured by an experimental method. However, the kEP representing the E-P interaction strength

cannot be directly measured by experiments but can be estimated from experimental data, e.g.,

Hi-C data [47] or Capture-C data [10].

Modeling gene expression dynamics. Gene expression process can be characterized by a

two-state model with an active ON and a silent OFF state (Fig 1D). The switching rates from

OFF to ON and vice versa are α and β, respectively. The transcription rate is μ, and the mRNA

degradation rate is δ. We define θ = [α,β,μ,δ] as the gene-state switching rates set.

Bridging chromatin dynamics and gene expression. After having identified chromatin con-

formations and transcriptional reactions independently, we next build a biologically reasonable

link between them (Fig 1C). E-P interaction carries regulatory information to orchestrate gene

expression, and we hypothesize that the time-varying E-P spatial distance dS = krE−rPk encodes

the information to regulate the transcription-associated reaction rates θ. That is θ = H(ds), where

H is a link function vector. Therefore, the two-state model mentioned above becomes a variable

two-state model in which the rates θ depend on the E-P spatial distance dS.

Recent experimental results show that E-P proximity increases the likelihood of gene

expression [14]. It is reasonably assumed that if dS is smaller, then α and μ are larger, but β is

smaller (in the case that δ is constant). For simplification, we assume β is independent of dS

and α(μ) changes between αmax(μmax) and αmin(μmin) with the fluctuating dS. We choose a Hill

function [48] to reflect the effect of changes in the E-P spatial distance dS on the rates θ,

although the specific shape of the corresponding response curve can also be captured by other

functions. Specifically, we assume that the rates α and μ depend nonlinearly on dS, i.e., each is

a Hill-like function vector H (see S1 Text).

Under the above settings, we propose a stochastic simulation algorithm to simulate the time

evolution of the entire system (see S1 Text). In Result section, we will study how E-P interac-

tion strength kEP and E-P genome distance dG regulate gene expression and how they affect

the shape and characterization of mRNA distributions. In short, our modeling strategy pro-

vides a possible framework for characterizing 3D chromatin motion and tracking gene-expres-

sion processes over 1D time [41,42].

Model-data approach to infer E-P interactions and gene-expression kinetics

We use the above model to fit the mRNA distribution of single-molecule RNA fluorescence in

situ hybridization (smRNA-FISH) in mESCs [10]. The data includes 6 cell lines Ck
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(k = 1,. . .,6). In each cell line, the enhancer is placed at different positions from the promoter

to drive the expression of enhanced green fluorescent protein (eGFP), so we can get the E-P

genomic distance and corresponding mRNA distribution with the bin number nk as well as

the corresponding steady-state probability distribution Qk(X = xi) (1�i�nk).
For each cell line Ck, we theoretically calculate the steady-state probability distribution with

parameters Γ (including E-P interaction parameters and gene expression parameters). Then,

we discretize the steady-state distribution Pk(X = xi;Γ) (1�i�nk) that is comparable with the

experiment data Qk(X = xi). Note that the cross entropy of the cell line Ck is given by

HkðΓÞ ¼ �
Xnk

i¼1

QkðX ¼ xiÞlogðPkðX ¼ xi; ΓÞÞ; ð5Þ

and the best-fit parameters by minimizing the total cross entropy function

arg min
Γ

HðΓÞ ¼ arg min
Γ
�
X6

k¼1

Xnk

i¼1

QkðX ¼ xiÞlogðPkðX ¼ xi; ΓÞÞ: ð6Þ

In fact, the minimum cross-entropy method is the same as maximum likelihood estimation.

To solve this optimization problem, we use the fmincon function (a nonlinear programming

solver) in the LBFGS method of MATLAB to find the minimum value of the optimization

problem given a set of initial values and parameter intervals (S1 Text).

Results

Analytical results of steady mRNA distribution

To study the qualitative and quantitative effects of E-P interaction (including E-P genomic dis-

tance dG and E-P interaction strength kEP) on gene expression (including the mRNA distribu-

tion, the mean mRNA expression level and the coefficient of variation (CV) defined as the

ratio of standard deviation over mean), we use the 4D nucleome equation (Eq [4]) to solve the

steady mRNA distribution P(x) depending on the E-P spatial distance dS.

Note that the entire gene expression system contains two modules–upstream chromatin

conformation on a fast timescale and downstream gene expression on a slow timescale. If the

typical timescales for the former and latter are denoted by τup and τdown respectively, Eq [4]

can be rewritten as the rescaled equation

@pðr; s; tÞ
@t

¼ �
1

tup
rr � ðpðr; s; tÞ~V ðr; tÞ

T
Þ þ r2

r ð
~Dpðr; s; tÞÞ

� �
þ

1

tdown

~Wðr; tÞpðr; s; tÞ
� �

; ð7Þ

where ~V ¼ tupV; ~D ¼ tupD; ~W ¼ tdown ~W . Deriving the mRNA distribution directly from the

above multiscale system is a particular challenging task. Here we resort to a timescale separa-

tion method. Before this, however, we consider the E-P interaction and gene expression

dynamics independently.

When focusing only on the motion of upstream chromatin conformation, we find that the

stationary probability density function of chromatin conformation r can be expressed as

pstatðrÞ ¼
Y3

i¼1
piðrÞ since every monomer moves independently in each dimension. Notably,

we find that E-P spatial distance dS obeys the following exact Maxwell-Boltzmann distribution

(Fig 2A and S1 Text)

pDSðdSÞ ¼

ffiffiffi
2

p

r

Y
� 3d2

Sexp �
d2
S

2Y
2

� �

; ð8Þ
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where the lumping parameter Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DgðkNN=dG þ kEPÞ
� 1

q

determines how changes in E-P

interaction strength kEP or E-P genomic distance dG alter the shape of the pDS(dS). Experimen-

tal measurement of 3D spatial distance between Sox2 and its enhancer in living ESCs [49] or

between the even-skipped (eve) locus and its enhancer in the fly embryo [50] can be well fitted

by Eq [8], confirming the validity of theoretical analysis (Fig 2B).

When focusing only on the downstream gene expression, that is, given a dS (or a frozen E-P

topology), we find that the stationary probability distribution of mRNA abundance PmRNA(x)

is a Poisson-Beta distribution (Fig 2C, [51]). That is,

PmRNAjdS
ðxÞ ¼ Poissonðx; ~mtÞ^

t
Betaðt; ~a; ~bÞ

¼

Z 1

0

ð~mtÞx

x!
e� ~mt t

~a � 1ð1 � tÞ
~b � 1

Bð~a; ~bÞ
dt;

ð9Þ

where ^ represents the mixture of two distributions, and the gene-state switching rates are in

the unit of the mRNA decay rate, i.e., ~a ¼ a=d, ~b ¼ b=d, ~m ¼ m=d (Fig 2C).

Now, we turn to derive mRNA distribution by using the timescale separation method. First,

we assume that the upstream process is much faster than the downstream process, i.e., we only

consider the limit case of τup/τdown = B<<1. By rescaling t to t/τdown, we can then assume the

formal solution pðr; s; tÞ ¼ pð0Þðr; s; tÞ þ Bpð1Þðr; s; tÞ þ OðB2Þ. Considering the leading order

of B and the stationary condition, we have 0 ¼ rr � ðpð0Þðr; s; tÞ ~V ðr; tÞ
T
Þ þ r2

r ð
~Dpð0Þðr; s; tÞÞ.
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Fig 2. Distributions of gene expression model. (A) The distribution of E-P spatial distance (Maxwell-Boltzmann distribution given by Eq [8])

where red lines represent theoretical results, and histograms represent numerical results. (B) Experimental measurement of 3D spatial distance

between Sox2 and its enhancer in living ESCs (histogram, [49]). The blue line is obtained by fitting Eq [8]. (C) The mRNA distribution conditional
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https://doi.org/10.1371/journal.pcbi.1011722.g002
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Since we have neglected the regulation of gene state by chromatin structure, the zero-th order

solution p(0)(r,s;t) can be decoupled as p(0)(r,s;t) = pstat(r)p(s;t), implying that the quasi-station-

ary of chromatin motion is well separated from the downstream transcription. In general, the

stationary mRNA probability distribution is given through (Fig 2D)

PFastðxÞ ¼ PmRNAjhDSiðxj
Z þ1

0

HðdSÞpDSðdSÞddSÞ

¼ Poissonðx; h~mðdSÞitÞ^
t
Betaðt; h~aðdSÞi; h

~bðdSÞiÞ;

ð10Þ

where hDSi is the expectation of E-P spatial distance and PmRNA|hDSi(x) (the distribution con-

ditional on the averaged dS) is given through Eq [9].

Second, we consider the opposite limit, i.e., τup/τdown = z>>1. In this limit and similar to the

analysis in the case of τup/τdown = B<<1, we find that p(0)(r,s;t) can also be decoupled as p(0)(r,s;
t) = p(r;t)pstat(s|r), where the equation group ~WðrÞpstatðsjrÞ ¼ 0 determines pstat(s|r). Therefore,

the chromatin spatial positions are not independent of the downstream gene expression. But

the stationary mRNA probability distribution can be calculated according to (Fig 2E)

PSlowðxÞ ¼
Z þ1

0

PmRNAjdS
ðxjHðdSÞÞpDSðdSÞddS

¼ Poissonðx; ~mðdSÞtÞ ^t Betaðt; ~aðdSÞ;
~bðdSÞÞ ^dS

MaxBoltzðdSÞ

ð11Þ

where PmRNAjdS
ðxÞ (i.e., the distributions conditional on the dS) is given by Eq [9].

Finally, in the intermediate regime, we find that P(x) can be well fit with the following for-

mula (Fig 2F)

P xð Þ �
1

1þ o
PFast xð Þ þ

o

1þ o
PSlow xð Þ

¼
1

1þ o
Poisson x; h~mðdSÞitð Þ ^

t
Beta t; h~aðdSÞi; h

~bðdSÞi
� �

þ
o

1þ o
Poisson x; ~mðdSÞtð Þ ^

t
Beta t; ~aðdSÞ;

~bðdSÞ
� �

^
dS
MaxBoltz dSð Þ;

ð12Þ

where ω is a scaling factor defined as the ratio of minimum variable transition rate

and maximum chromatin motion velocity. o ¼ minfamin; mming=maxVðrÞ, where

VðrÞ ¼ ½ðkNN=dG þ kEPÞdS�=ðbgÞ, b is E-P encounter distance and dS can be selected as the

maximum E-P spatial distance that can be theoretically reached (in fact, the cumulative density

function of pDS(dS) reaches 0.99).

It is worth mentioning that Eq [12] provides high-accuracy approximations of mRNA

steady distribution and is a useful and simple formula for predicting the dynamics of mRNA

over a broad range of timescale separation. We can further trace the respective contributions

of the system’s key parameters (e.g., dG and kEP) to the patterns of mRNA distribution, to bet-

ter reveal the essential mechanism of gene expression.

E-P interaction controls the mean level and variability of gene expression

To understand how E-P interaction modulates gene expression, we use the above theoretical

analysis to explore the qualitative impact of E-P genomic distance dG and E-P interaction

strength kEP on gene expression. We calculate the mean (hmRNAi) and the CV of the mRNA

probability distribution in steady state, based on Eq [12].

Fig 3A and 3B depict how changes in dG alter hmRNAi and CV. We find that when kEP is

fixed, hmRNAimonotonously decreases and CV monotonically increases with increasing dG.

PLOS COMPUTATIONAL BIOLOGY 4D nucleome equation predicts gene expression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011722 December 18, 2023 8 / 20

https://doi.org/10.1371/journal.pcbi.1011722


Theoretically, a smaller dG corresponds to a shorter E-P spatial distance and a more frequent

E-P interaction, thus boosting the expression level. Fig 3C and 3D reveal the distinct effects of

different kEP on gene expression. It shows that the tendencies are completely different from

those in the case of changing dG. hmRNAi is monotonously upregulated and CV is downregu-

lated by kEP. Indeed, Eq [8] has shown the opposite effect of dG and kEP on E-P spatial distance

and then on gene expression. Log-log plot represents power-law behaviors of hmRNAi regu-

lated by dG or kEP (Fig 3A and 3C inset). Moreover, it can be seen that the enhancement or the

reduction of hmRNAi (at larger dG or kEP) tends to be saturated, indicating that the effect of

E-P interaction on gene expression is not infinite but limited.

Notably, the qualitative behaviors of hmRNAi are consistent with many experimental

observations [6,10,17,18,52]. For example, a larger dG between sna shadow enhancer and pro-

moter generates fewer mRNAs than a smaller dG [6,17], and a stronger enhancer (correspond-

ing to a larger kEP) produces more mRNAs than a weaker enhancer [6] in living Drosophila
embryos. And with the increase of dose concentrations (corresponding to the increment of

kEP), the mRNA of the MS2 reporter gene grows and reaches saturation [52]. Another example

is that in mESCs, the mRNA level decreases and tends to remain unchanged in response to the

enlargement of E-P genomic distance [10].

In addition, we study the combined effect of state-switching rates and E-P interaction on

gene expression. The downstream gene-expression model is a variable ON-OFF model with

variable α and μ. We find that increasing α (or μ, no matter increase αmax (or μmax) and αmin

(or μmin)) enlarges hmRNAi and reduces CV (Fig 3). This is because larger α can elongate the
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https://doi.org/10.1371/journal.pcbi.1011722.g003
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ON state residence time, and larger μ makes the time interval of mRNA generation become

shorter, and each case leads to enlargement in hmRNAi and diminishment in CV.

E-P interaction can induce bimodal and multimodal mRNA distributions

Having clarified the qualitative effect of E-P interaction on the hmRNAi and CV of mRNA, we

next analyze how E-P interaction impacts the shape of mRNA distribution, including the peak

numbers and peak probabilities. We adjust the E-P interaction strength kEP and E-P genomic

distance dG and calculate the theoretical distributions according to Eq [12].

Each peak is defined as the observed local maximum value to identify the peak number of

mRNA distributions. Based on this, we draw the boundary lines. As a result, we find that the

unimodal (U), bimodal (B), and trimodal (T) distributions can appear (Fig 4A). Besides, the

heatmap in Fig 4A is the bimodal coefficient BC = 1/(K−S2), where S ¼ n3=n
3=2

2 is the skewness

of mRNA distribution, K ¼ n4=n
2
2

is the kurtosis, and vi is the i-th central moment, i = 2,3,4.

Fig 4B shows that when dG is fixed, with the increase of kEP, the distribution can appear in

five modes: unimodal with the origin peak (OP), bimodal with one OP and one non-origin

peak (NOP), trimodal with one OP and two NOPs, bimodal with two NOPs and unimodal

with the NOP. In fact, we can see the evolutionary process of the peak numbers and peak prob-

abilities. The OP goes under with amplifying the kEP, and a NOP begins to grow and a bimodal

then occurs. When the distance between the two peaks of the bimodal becomes larger, a peak

emerges at the larger mRNA and the bimodal distribution turns to trimodal distribution. Sub-

sequently, the OP vanishes and gets back to the bimodal. The distance between the two NOPs

of the bimodal distribution can become smaller, and the peak corresponding to the fewer

mRNA disappears when the bimodal becomes unimodal. Fig 4D perfectly demonstrates the

above process, and the simulations (histograms) are in good agreement with theoretical pre-

dictions (solid lines). In addition, when we fix kEP, the influence of dG on the distribution
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modes is opposite to that of kEP (Comparing Fig 4B and 4C). It should be pointed out that

although the trimodal distribution may be absent under some parameter values, the pattern of

distribution along kEP or dG still changes from unimodal to bimodal and then back to unimo-

dal. During the bimidal phase, the peak at the smaller mRNA gradually disappears, resulting in

the transition from bimodal to unimodal (see S2 and S3 Figs).

These results indicate that E-P interaction can produce multiple modes of mRNA distri-

bution. More importantly, it can lead to mRNA distributions with two NOPs and even with

three peaks. S1 Fig shows more bimodal and trimodal cases under different parameter val-

ues. Notably, only the downstream ON-OFF model (Eq [9]) can produce neither bimodal

with two NOPs nor trimodal. In fact, the phenomenon of bimodal with two NOPs has been

confirmed in biological experiments, such as the random activity of latent HIV-1 promoters

[53]. In Ref [54],the researchers studied the transcriptional behavior of GREB1 changes

with estrogen dose. Generally, addition of estrogen (17b-estradiol, E2) may increase con-

tacts between the GREB1 gene and the estrogen-receptor-α-bound enhancer [55], thus

altering the E-P interaction strength. When increasing the E2 concentration (increasing the

E-P interaction strength), the mRNA level grows and the mRNA distribution changes from

the single peak to a bimodal distribution. A new peak emerges at a higher mRNA level and

gradually increases and the peak near the origin gradually decreases, which is consistent

with our model (see S2 Fig). In a word, these phenomena highlight the importance of E-P

interaction in regulating gene expression, which may explain the source of multimodality.

And the distinctive modes of mRNA distribution for achieving fast responses to stimula-

tions and phenotypic switching would be essential for environmental adaptation and cellu-

lar decision-making.

Analysis of mouse embryonic stem cell data indicates that E-P interaction

regulates promoter activation and transcription initiation

To check the effectiveness of our model, we used different E-P distances that forming distinc-

tive cell lines Ck (k = 1,. . .,6) and corresponding mRNA distribution measured by smRNA-

FISH in mESCs [10] to infer gene expression dynamics (Materials And Methods). Assume

that the mRNA distributions in different cell lines Ck are different only due to the different E-P

genomic distances, and that an enhancer is inserted into the upstream or downstream of an

promoter with the same genomic distance has no significant difference. The E-P genomic dis-

tances for different cell lines are NaN, 112.1710 kb, 39.4530 kb, 23.1110 kb, 17.0190 kb and

6.0600 kb respectively, where the NaN means the eGFP transcription is driven by the Sox2

promoter alone. Then, we suppose that one monomer in the coarse-grained polymer model

represents 5kb, the E-P genomic distances for our model in different cell lines Ck are NaN, 22,

8, 5, 3, and 1, respectively. It should be pointed out that the dG is the value after rounding.

Frist, we preliminarily attempt to use the two-state model without considering E-P regula-

tory to infer gene expression dynamics. We find that the changing α and μ in different cell

lines get the minimize cross entropy (Table A in S1 Text). Then, we involve the long-range E-P

regulatory into the model and define three variable two-state models (the variable α two-state

model, the variable μ two-state model, and the variable α and μ two-state model) to simulate

the transcription process (S1 Text). For each cell line Ck, we calculate the steady-state probabil-

ity distributions by using Eq [12] and use Eq [6] to estimate the optimized parameter values

(Materials And Methods). We find that the two-state model with variable α and μ obtains the

minmum cross entropy, which indicates E-P communication prefers to regulate the promoter

activation (α) and transcription initiation (μ) rates (Table B in S1 Text). The multiscale model

fit converged to a good set of parameters Γ ¼ ½kNN; kEP; g; amin; amax; b; mmin; mmax� describing
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chromatin and gene expression dynamics (see Table C in S1 Text). In addition, different

monomer lengths do not alter the fitting results (see Table D in S1 Text).

As a result, Fig 5A shows that the 4D nucleome equation can well fit the mRNA distribu-

tions under different E-P interaction. It should be pointed out that the weight of slow chroma-

tin dynamics (1/(1+ω)) plays an important role in modifying the fitted distribution (see S5 Fig

and S1 Text). Based on the best fitting parameter values and Eq [8], we can further study the

relationship between E-P genomic distance and E-P contact probability (see S1 Text). Fig 5B

shows that with increasing E-P genomic distance, the contact probability steeply decays and

tends to be flat, which is in good agreement with the experimental results confirmed using

Capture-C analysis [10]. Log-log plot represents a power-law behavior between E-P genomic

distance and contact probability (Fig 5B inset), also in accordance with many experimental

data in consecutive and nonconsecutive TAD borders [56], even on the genome-wide scale

[57,58]. Second, Fig 5C shows the relationship between contact probability and mean gene

expression level. We see that the values and the change tendency of the contact probability and

average mRNA level obtained by theoretical calculations (light red circle) are basically consis-

tent with the experimental data (light blue circle). If we focus on the six special cell lines shown

in Fig 5A, we find that the inferred results (red polygon) and experimental data (blue polygon)

are relatively consistent in values and change tendency. Third, for the relationship between

CV of eGFP levels and contact probability (Fig 5D), we find that the theoretical result and

experimental data are also relatively consistent in values and change tendency. In addition, we

consider changing the upstream-downstream nonlinear Hill function in the model to a linear
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(A) Distributions of the mRNA numbers of smRNA-FISH in different cell lines. The solid line shows the best fit of our

stochastic multiscale model to the experimental data shown in the histograms. dG = NaN represents promoter-only

control cell line. Parameter values are listed in Table E in S1 Text. (B) The relationship between dG and contact

probability. The blue circles represent the experimental data from the ectopic Sox 2 transgene. The solid line is

obtained based on the best-fit values of parameters kNN and kEP. The inset shows the log-log plot. (C) Mean eGFP

mRNA level plotted against contact probability between the ectopic Sox2 promoter and SCR insertions. The shadow

blue dots show the experimental data presented as mean values +/- standard deviation, whereas the shadow red dots

show the theoretical results obtained by best-fit parameter values. The blue polygon shows the experimental data in

(A), and the red polygon shows the corresponding theoretical results. (D) CV of eGFP level against contact probability.

The meanings of symbols are the same as those in (C).

https://doi.org/10.1371/journal.pcbi.1011722.g005
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form (i.e., using a linear function within a reasonable range of E-P spatial distances). By using

the same fitting method, we find that the linear model fits the experiemental data well (see S6

Fig). Therefore, in our model, non-linear dependence of the activation rate on E-P contacts

does not seem to be a dominant cause of the nonlinear relationship between connection prob-

ability and mean expression observed in the experiment. Rather, the coupling of the fast-slow

chromatin dynamics may be an important factor contributing to the nonlinearity.

Finally, we verify that the inferred results are consistent with previous observations. The

inferred kNN = 0.7758 is one order of magnitude larger than kEP = 0.0969, indicating that the

ectopic enhancer and promoter do not have a prominent specific interaction compared to the

connection between successive monomers. This result is consistent with experimental studies

[10]. Meanwhile, the fold change between αmax and αmin (18 folds) is larger than that between

μmax and μmin (8 folds), indicating that E-P interaction is inclined to adjust OFF state dwell

time (related to α) and further verifying that E-P interaction mainly regulates burst frequency

[6,7,10,59,60]. According to the inferred results, the ON-state dwell time is in the timescale of

minutes, and the OFF-state dwell time is from minutes to hours [61–63] (considering that the

time unit is mRNA lifetime, expected to be around 1.5 hours [64]). The number of mRNA per

burst is about tens of mRNAs, consistent with a previous experimental observation [63].

Taken together, our model results are consistent with previous experimental observations

and suggest a possible essential mechanism of gene expression regulated by E-P interaction.

Discussion

Imaging studies, high-resolution chromatin conformation maps, and genome-wide occupancy

profiles of architectural proteins have revealed that genome topology encoding E-P interaction

information is tightly correlated with gene expression. In this paper, we have proposed a gen-

eral yet tractable multiscale model, which integrates the E-P interaction information into gene

expression, to shed light on the pivotal role of E-P spatial interaction in the control of gene

expression profiles.

This theoretical framework characterizes the dynamic process of stochastic gene expression

regulated by chromatin movement in the nucleus by using a 4D nucleome equation. First, the

fast-scale chromatin motion processes (including E-P interaction) can be described by a gener-

alized Rouse model, which is suitable for modeling the situation that the environmental effects

of entanglement and crowding are negligible [65]. Second, the slow-scale gene expression pro-

cess is described by a two-state model that captures essential events occurring in transcrip-

tional processes. Third, an input-output relation was proposed to link upstream chromatin

configurations to downstream gene expression. This equation unifies two stochastic processes

with two different time scales, which can be taken as a good starting point for analyzing how

chromatin motion affects gene expression in complex cases.

Overcoming time-scale differences and biological-process complexity to solve mRNA dis-

tribution analytically in this 4D nucleome equation is challenging. However, the analytical

methodology developed here can be used in quantitatively studying distribution characteristics

of gene expression involving E-P interaction. In fact, we have used the timescale separation

method to obtain analytical mRNA distributions. In addition, our approach also allows us to

make meaningful predictions about how upstream chromatin dynamics affect downstream

gene-expression phenotypes. First, we have shown that E-P genomic distance dG and E-P

interaction strength kEP, two key parameters in our model, have the opposite change trends on

mRNA mean levels and CVs, which were qualitatively verified by experimental data. Second,

our model demonstrated that the combination of kEP and dG is a flexible regulation strategy to

explain possible implications of bimodal distributions with two NOPs and trimodal
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distributions. The peaks are more sensitive to the change of dG when kEP is small, but to the

change of kEP when dG is large (Figs 4, S2, and S3). S7 Fig also shows different parameters in

modulating mRNA distribution. System’s parameters would collectively regulate the resulting

mRNA distribution, and the parameters related to E-P communication shows a consistent pat-

tern of modulating mRNA distribution across parameter changes. These sensitivity phenome-

non provide insights into complex mechanisms of biological processes and are essential for

cellular decision-making and environmental adaptation. Third, our mathematical model

shows well predictions on the experimental mESCs data, including the mRNA distributions

and the relationship between contact probability and mean mRNA level (and CV) under def-

ferent E-P interactions. The inference results indicate that the slow chromatin dynamics plays

an important role in regulating the distribution of mRNAs (S5 Fig). And in particularly, for

the slow dynamics, the regulation of upstream to downstream is inseparable, which may cause

the gene expression levels of the slow limit are not linear dependence on E-P contacts and

eventually lead to the nonlinearity observed in the experiment between transcriptional levels

and E-P contact probabilities. These results provide a possible mechanism for E-P interaction

translated into gene-expression dynamics.

Our model has several advantages compared to previous work that studied the effect of

chromatin structure on gene expression. Xiao et al. [31] proposed a mechanism of how E-P

signals were involved in the accumulation and removal of the transcription factors favoring

transcription to explain the hypersensitivity of transcription to changes in contact frequency.

Zuin et al. [10] used the E-P encounter probability obtained from the data analysis as the regu-

lator of the upstream to the downstream and assumed that the OFF to ON process was a

multi-step process with cumulative effects. However, we note that the corresponding models

did not use dynamically fluctuating E-P spatial distances to regulate downstream transcription

processes. In our model, random movement of the enhancer and promoter causes fluctuations

in E-P spatial distance and regulates gene transcription in real time. In fact, this direct and

dynamic regulation leads to the variable rate from OFF to ON, which is practically an alterna-

tive to the multi-step process described above. We point out that in the case of fast chromatin

dynamics, upstream-to-downstream regulation is performed through the expectation of the

E-P spatial distance, which can be equated, in a general way, to the contact probability in

Ref. [10]. However, the slow chromatin dynamics also plays an important role in regulating

the distribution of mRNAs (see S1 Text). Moreover, our model has the ability to infer the

gene-expression dynamics using less information that can be directly measured and leading to

better fitting on mESC data to some extent (S4 Fig), especially for the E-P genomic distance in

different cell lines, rather than the E-P encounter probability.

Significantly, our modeling framework can also be extended to more complex situations.

For example, some experimental studies reported that gene products could affect chromatin

structure [66,67]. We can incorporate this feedback into our model by modifying the gene-

state-dependent drift function V(r,s;t) in Eq [4]. In addition, our modeling of chromatin

motion is not limited to one-pair E-P interaction. The potential extensions include the cases of

multiple enhancers to one promoter [68], one enhancer to multiple promoters [6], or super-

enhancers [69]. Finally, using multistate models of gene expression to extract insights from

enormous experimental data and complex biological phenomena is impressive. Our two-state

model is not the default option, and we may adjust the form of the downstream gene expres-

sion model to include more complex biological processes such as mRNA splices [70] and cell

cycle [71]. However, we still need to balance the complexity and solvability of the model.

Finally, we point out that our theoretical model, which aims to develop a general modeling

framework to study 4D gene-expression kinetics, may provide an opportunity for a dialogue
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between theoretical studies and biological experiments. We envision that our modeling frame-

work will be helpful for the biophysical analysis of broader in vivo cellular processes.

Supporting information

S1 Text. It consists of two parts: (1) model description and simulation; (2) fitting experi-

mental data using model. In the first section, we supplement the details of the model and give

the simulation algorithm as well as the statistics analyses of the simulation data. In the second

section, we present the procedure for fitting experimental data using our model and compar-

ing the experimental data with theoretical results.

(PDF)

S1 Fig. Bimodal and trimodal cases under different parameters. (A) The bimodal distribu-

tion (with a origin peak and a non-origin peak) of gene expression where kEP = 0.5, γ = 1, αmax

= 0.10, αmin = 0.01, β = 0.03, μmax = 5, μmin = 2, δ = 0.1. (B) The bimodal distribution (with two

origin peaks) of gene expression where kEP = 0.20, γ = 100, αmax = 5, αmin = 0.30, β = 0.50, μmax

= 8, μmin = 2, δ = 0.1. (C) The trimodal distribution of gene expression where kEP = 0.1, γ =

300, αmax = 0.5, αmin = 0.05, β = 0.02, μmax = 10, μmin = 2, δ = 0.1.

(TIF)

S2 Fig. E-P interaction can induce bimodal mRNA distribution with two non-origin peaks.

(A) Effects of E-P interaction on mRNA distribution. The black lines stand for the boundaries

of different peak numbers. The plain is divided into distinctive regions representing unimodal

(U) and bimodal (B). The heatmap is the bimodal coefficient. (B) Dependence of the most

probable mRNA numbers on kEP where dG = 60. The color regions represent different peak

numbers. The color bar represents the peak probabilities. (C) The example of unimodal/

bimodal mRNA distribution. NOP (non-origin peak). The solid lines represent theoretical

results and histograms represent numerical results. Parameter values are set as dG = 60, αmax =

5, αmin = 0.3, β = 0.5, μmax = 8, μmin = 2, δ = 0.1, γ = 50.

(TIF)

S3 Fig. E-P interaction can induce bimodal mRNA distribution with one origin peak and

one non-origin peak. (A) Effects of E-P interaction on mRNA distribution. The black lines

stand for the boundaries of different peak numbers. The plain is divided into distinctive

regions representing unimodal (U) and bimodal (B). The heatmap is the bimodal coefficient.

(B) Dependence of the most probable mRNA numbers on kEP where dG = 60. The color

regions represent different peak numbers. The color bar represents the peak probabilities. (C)

The example of unimodal/bimodal mRNA distribution. OP (origin peak), NOP (non-origin

peak). The solid lines represent theoretical results and histograms represent numerical results.

Parameter values are set as dG = 60, αmax = 0.10, αmin = 0.01, β = 0.03, μmax = 5, μmin = 2, δ =

0.1, γ = 1.

(TIF)

S4 Fig. Comparisons the fitting results of our model and Zuin’s model to experimental

data. (A) KS distances of different cell lines (the KS distance is defined in Eq [16] in the S1

Text). The blue dots and shadow line stand for the KS distance between our model and experi-

mental data, and the dashed blue line represents the mean KS distance for all cell lines. The red

shows the KS distance between Zuin’s model and experimental data. (B) Distribution of

mRNA numbers of smRNA-FISH in cell lines C6. The blue line shows the best fit of our model

whereas the red line shows the best fit of Zuin’s model to the experimental data shown in the

histograms. (C) CDF of the distributions in (B). The KSW
6
¼ 0:0284 and KSZ

6
¼ 0:12. The
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small arrows represent the number of mRNAs corresponding to the KS distance.

(TIF)

S5 Fig. The contribution of slow chromatin dynamics to data fitting. (A) The weight of

slow chromatin dynamics in fitting distribution (1/(1+ω)). (B) KS distances of different cell

lines. The blue dots and shadow line stand for the KS distance between the fast distribution

and experimental data, and the red shows the KS distance between interpolation distribution

and experimental data. The dashed lines represent the mean KS distance for all cell lines. (C)

The distribution of Cell line 2. (D) The distribution of Cell line 6.

(TIF)

S6 Fig. Comparing the fitting results of model’s Hill and linear dependence to experimen-

tal data. (A) KS distances of different cell lines. The red (/green) dots and shadow line stand

for the KS distance between Hill (/linear) (Eq [3]/Eq [4] in S1 Text) dependence and experi-

mental data. The blue shows the KS distance between Zuin’s model and experimental data. the

dashed lines represent the mean KS distance for all cell lines. (B) The relationship between dG

and contact probability. The blue circles represent the experimental data from the ectopic Sox

2 transgene. The solid red (/green) line is obtained based on the Hill (/linear) dependence. The

inset shows the log-log plot. (C) Mean eGFP mRNA level plotted against contact probability

between the ectopic Sox2 promoter and SCR insertions. The blue polygon shows the experi-

mental data, and the red (/green) polygon shows the corresponding theoretical results based

on the Hill (/linear) dependence. (D) CV of eGFP level against contact probability. The mean-

ings of symbols are the same as those in (C).

(TIF)

S7 Fig. Comparisons of parameter’s changes on the multimodality of mRNA distribution.

(A) Effects of E-P interaction strengths kEP and friction coefficient γ on the pattern of mRNA

distribution. Parameters are dG = 60, αmax = 5, αmin = 0.3, β = 0.5, μmax = 8, μmin = 2, δ = 0.1.

(B) Effects of kEP and the ratio of μmax/μmin on the pattern of mRNA distribution. The μmin =

0.1, 0.3, 0.5. Parameters are αmax = 0.10, αmin = 0.01. (C) Effects of kEP and the ratio of αmax/

αmin on the pattern of mRNA distribution. The αmin = 0.01, 0.04, 0.08. Parameters are μmax =

5, μmin = 2. Each line divides the entire region into two parts, with U indicating a single peak

area and M indicating a multimodal area. Other parameter values are set as dG = 60, β = 0.03, δ
= 0.1, γ = 1. The solid line divides the entire region into two parts, with the part marked U

indicating unimodal and the part marked M indicating multimodal (including bimodal and

trimodal).

(TIF)
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