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ABSTRACT 
 

Aims: Alterations in the cerebrum structurally and functionally are triggered largely due to an 
increase in neuro depressive brain disorders like Alzheimer’s. This study aims is to determine these 
alterations in the regions of the cerebrum which are significant and distinguishing in Alzheimer’s 
disease subjects compared to healthy. We employ the most potential resting-state functional 
Magnetic Resonance Imaging (rs-fMRI) modality for this analysis. 
Methodology: 24 Alzheimer’s disease (AD) and 25 Healthy Controlled (HC) subjects were 
evaluated with rs-fMRI which is more efficient in anticipating neuronal activity changes. Thus, 
obtained data of all subjects were preprocessed and components of larger networks to smaller 
regions were extracted by independent component analysis (ICA) method. Differences in resting-
state connectivity were examined for 6 networks of interest viz., Auditory network, Central 
Executive network, Default mode network, Silence mode network, Sensory-motor network and 
Visual network and their regions, which are affected due to the common symptoms of Alzheimer’s 
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disease-like memory, thinking and behavioral changes. Statistical analysis was done with one 
sample t-test to check the functional connectivity activations in Resting-State Networks (RSNs) and 
regions of both AD & HC groups at a threshold of T>2. Finally, to obtain the abnormal sub-regions 
in each of the RSNs of AD a two-sample t-test was carried out at a threshold of P < .03. 
Results: Our method potentially identifies the functional connectivity alterations and core regions 
dysfunction amongst the major 6 RSNs in AD compared to HC subjects. The results also showed 
decreased connectivity in regions of sensory-motor and default mode networks increased 
connectivity in regions of central executive and silence mode network along with some of the sub-
regions dysfunctions in AD. 
Conclusion: Modifications in functional connectivity within the major RSNs and regions have been 
detected which serves as a capability to determine an early biomarker and examining the disease 
progression. 
 

 
Keywords: Functional Magnetic Resonance Imaging (fMRI); resting-state fMRI; functional 

connectivity; Alzheimer’s disease; independent component analysis; resting state 
networks; auditory network; central executive network; default mode network; salience 
network; sensory-motor network; visual network. 

 

ABBREVIATIONS 
 
AD : Alzheimer’s disease;  
ADNI : Alzheimer’s disease Neuroimaging         

Initiative;  
BOLD : Blood oxygen level dependent; 
fALfFF : Fractional amplitude of low frequency 

fluctuations 
fMRI  : Functional magnetic resonance 

imaging;  
RS-fMRI : Resting state fMRI; 
RSN  : Resting state networks; 
ICA : Independent components analysis; 
GIFT : Group ICA fMRI toolbox; 
DPARSF : Data processing assistance for 

resting-state fMRI toolbox; 
 

1. INTRODUCTION 
 
The chronic Alzheimer’s disease (AD) gradually 
increases with episodic cognitive decline and 
progress towards irreparable memory loss, 
executive functions, language, visuospatial 
functions, and other behavioral domains. 
Neuronal dysfunction in AD is mainly due to the 
role of b-amyloid and neurofibrillary tangles 
which not only contribute to the structural 
changes but also functional connectivity 
deterioration in the brain. Evaluation of these 
reductions in functional neuronal activity is a 
sensitive biomarker for AD [1]. 

 
Functional magnetic resonance imaging (fMRI) 
has become increasingly prominent in 
understanding neuronal activity, which would be 
significantly widened to explore the functional 
neuronal network alterations of AD in comparison 

with Healthy controlled (HC) subjects. Resting-
state functional magnetic resonance imaging (rs-
fMRI) is more effective over task-based fMRI. In 
rs-fMRI the subjects are not given any task, thus 
excluding the cofounds of task difficulties and 
allow a review of neural activity when the 
subjects are at rest and offer valuable functional 
mapping measure that synchronizes activations 
between regions that are spatially distinct. Even 
during the resting period, it has been observed 
that some of the brain networks are functionally 
active [2,3], and thus using rs-fMRI modality it 
has been effective in identifying altered neural 
connectivity in AD [4]. 

 
The neural connectivity in the cortical brain is 
studied using methods such as Voxel-based [5], 
the region of interest (ROI) or seed-based 
analysis [6], graph theory [7], Independent 
component analysis (ICA) [8] and machine 
learning methods [9,10]. Independent component 
analysis (ICA), is the most popular and effective 
data-driven approach in the analysis of fMRI 
data. ICA is powerful to disintegrate 
heterogeneous magnetic resonance signal 
patterns and identify the resting-state networks 
(RSNs) from rs-fMRI [11,12]. It is also 
advantageous compared to other methods since 
it does not require prior and outside knowledge 
like ROI or seed-based analysis [13] or 
parameter and measure selections as in graph 
theory analysis and it can be used in 
complementary with machine-learning [14]. 
 
The challenging issue faced in ICA analysis is 
the number of components selection, previous 
studies have used lower-order components 
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extraction between 20 to 40 which would lead to 
the overlapping of the resting-state networks 
regions and high order components between 70 
to 90 and more would lead to over splitting of 
components [15,16]. In this current work, we set 
the components to be extracted from a lower-
order ranging from 20 components to a higher-
order component of 60 in steps of 10, Hence       
the major network and their regions are 
addressed. Another major issue is the separation 
of resting-state components and the artifacts 
components. Most of the previous studies have 
explored on an automated method for 
identification of only language network 
component [17], hand classification of noise 
components in single subject [18], SVM classifier 
[19] and Naive-Bayes algorithm [20] for noise 
components classification and some have used 
predefined spatial masks provided by Dante 
Mantini from Leuven Medical School [8] for 
classification. In this study we use a simple and 
efficient method in the identification of valid 
components by creating the masks with specific 
regions of interest so, that redundant regions   
are eliminated. The obtained resting-state 
components are the measure of functional 
connectivity within specific brain networks and 
show optimistic biomarkers in AD studies and 
helps in exploring abnormal regions in diseased 
[11]. 
 

2. METHODOLOGY 
 

2.1 Participant’s  
 
The experimental data is obtained by the 
publically available dataset ADNI “Alzheimer’s 
Disease Neuroimaging Initiative”. It is a non-
profitable organization since 2003 which consists 
of structural and functional magnetic resonance 
imaging along with positron emission 
tomography data of Alzheimer’s, Mild Cognitive 
Impairment and normal subjects with detailed 
basic and clinical information [21]. 
 
In this analysis, we make use of the functional 
MRI and structural MRI data of 49 subjects 
including 24 AD patients and 25 HC in the 
database of ADNI-2.AD subjects had           
MMSE (Mini-Mental State Examination) score 
between 20-25; CDR (Clinical Dementia Rate) 
equal to 0.5 or 1and HC had an MMSE score 
between 27-30; CDR equal to 0.We excluding 
the subjects with their head translation exceeding 
±1.5 mm and rotation exceeding ±1.5 mm. 
Finally remained with 45 subjects and their 
details are as shown in Table 1. 

Table 1. The participants information 
 

Project AD HC 
No of subjects 23 22 
Gender (male/female) 10/13 7/15 
Age 69.3±6 70.3±3 
MMSE 20-25 27-30 
CDR 0.5 or 1 0 

 

2.2 Resting-state Data Collection 
 
The images were obtained from a 3.0 Tesla 
Philips MRI scanner. Acquisition parameter 
includes 140 time points, TR=3000 ms, TE=30 
ms, flip angle=80°, 48 slices with a thickness             
of 3.3 mm and spatial resolution of 3×3×3 mm³ 
and matrix 64×64 as obtained from the      
database. 
 

2.3 Data Preprocessing 
 
The preprocessing was carried out with DPARSF 
“Data Processing Assistance for Resting-State 
fMRI” software tool [22], based on SPM 
“Statistical Parameter Mapping” in MATLAB and 
further statistical analysis was done with REST 
Resting-state fMRI toolkit. The raw data obtained 
from the ADNI-2 was processed by DPARSF 
with following steps, 
 

1. Conversion from Digital Imaging and 
Communications in Medicine (DICOM) 
format to NIfTI format. 

2. Reorientation of both functional and 
structural data for an alignment check. 

3. To reduce the error caused by the 
subject’s adaptation to the circumstances 
initial 10-time points of the functional 
images were discarded. 

4. Slice timing correction was performed with 
reference to the last slice. 

5. For head movement compensation the 
images were realigned using a six-
parameter rigid-body spatial transformation 
since excessive head motion may induce 
large artifacts in fMRI time series. 

6. T1 structural images were co-registered to 
the mean rsfMRI images. 

7. Normalization of the images to Standard 
EPI temple in SPM. 

8. Spatial smoothing of functional images 
with Gaussian kernel 6 mm full width at 
half maximum filter to reduce white noise 
and residual effect. 

9. Finally, linear drifts are removed and 
temporal filtering (0.01 Hz~0.08 Hz) were 
performed. 
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2.4 Independent Component Analysis 
 
The independent component analysis (ICA) is 
accomplished using GIFT “Group ICA for fMRI 
toolbox”. After the initial preprocessing ICA 
separates the fMRI signal into different sources 
of variance and extracts the spatially 
independent components. The ICA process 
includes reduction of subject’s functional data 
dimension using principle component analysis 
PCA along with INFOMAX algorithm, stable 
components were obtained by running the 
analysis 100 times using ICASSO toolbox [23] 
[24]. The number of components to be extracted 
is evaluated using Minimum Distance Length 
(MDL) [25] principle from all participants, the 
optimal number of components obtained were 60 
components; it always varies on the dataset 
selected. We repeat the ICA, by setting the 
number of components (ICs) to be extracted from 
a lower order of 20 signifying larger networks to 
higher order 60 components signifying smaller 
regions in steps of 10. Once all the components 
are extracted next we have to classify the valid 
components and artifacts. With the sole purpose 
to examine all the resting-state networks and 
their regions contributing to the differences in AD 
progression compared to HC. The subsequent 
components extracted from both AD and HC 
include time courses and their respective spatial 
maps, where the time courses of components 
representing the brain activity and spatial maps 
indicating their intensity. 
 

2.5 Identification of RSNs 
 
The extracted components are the combination 
of resting-state networks with valid brain signals 
and artifact components due to several causes 
such as white matter, blood vessels and cerebral 
fluid. Classification was performed by sorting of 
components using spatial correlation method. 
The sorting was carried out using masks created 
by WFU Pick Atlas [26] software by manually 
including specific region of interest in the grey 
matter. The masks with six major resting-state 
networks and the sub-masks with of all the 
regions were created. This method of mask 
creation helped eliminate all the redundant 
regions resulted from overlap of white matter, 
cerebrospinal fluid or brain boundaries. After 
sorting the components with largest correlation 
values were selected and examined for adequate 
dynamic range i.e. difference between the peak 
power and minimum power at frequencies to the 
right of the peak, fALFF (fractional amplitude of 
low frequency fluctuations) the integral of 

spectral power below 0.10 Hz to the integral of 
power between 0.15 and 0.25 Hz and finally 
visually inspected [27]. Hence the components 
extracted range from lower order comprising of 
larger networks and higher-order comparing of 
smaller regions of the networks. The six resting-
state network and their region representing the 
components are auditory network (AN) which 
includes right and left superior temporal lobe 
[28], the central executive network (CEN) 
including right and left regions of dorsolateral 
prefrontal cortex and posterior parietal cortex, 
Default mode network (DMN) is consists of 
medial pre-frontal cortex, inferior parietal lobe, 
posterior cingulated cortex, precuneus and 
hippocampus, Salience mode network (SN) 
includes anterior cingulated cortex and anterior 
insular [29], sensory-motor network (SMN) which 
includes precentral and post-central gyrus [30], 
and visual network (VN) including high and prim 
visual regions which are the part of the occipital 
cortex [31]. 
 

2.6 Statistical Analysis 
 
The six RSNs and their region components of AD 
and HC are evaluated for one sample t-test to 
know the activated brain network regions in each 
group and to obtain the significant group 
differences, with results displayed at the 
threshold of T > 2. Finally, the Z-shift was 
performed. Then two-sample t-tests were 
accomplished using REST toolbox on the 
specific region of interest. The masks with region 
of interest were obtained by the union of 
activated brain regions of both groups. This 
estimates the alterations in the functional 
connectivity of all the networks and regions. 
Finally results obtained were z transformed and 
represented with P < 0.03 (AlphaSim correction) 
[8]. 
 

3. RESULTS 
 

3.1 Spatial Distribution in RSNs 
 
One-sample t-test (T>2) results depict the 
resting-state network in two groups have typical 
spatial distribution patterns. The differences in 
spatial pattern distribution of auditory, central 
executive, default, salience, sensory-motor and 
visual networks along with their regions are        
as shown in Figs. 1-4 below. The auditory, 
sensory-motor and visual being sensory 
networks show decreased functional connectivity 
in AD; executive and salience network part of              
the attention networks show increased 



connectivity and default mode network which ar
active when the subjects are at rest, shows 
 

Fig. 1. Auditory, sensory-motor and executive network 

Fig. 2. Default mode network functional activation differences in AD and HC
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connectivity and default mode network which are 
active when the subjects are at rest, shows 

reduced connectivity in AD as compared to HC 
[32,33]. 

 
motor and executive network functional activations differences in AD 

and HC 
 

 
Default mode network functional activation differences in AD and HC

 
 
 
 

; Article no.AJMAH.57122 
 
 

reduced connectivity in AD as compared to HC 

 

activations differences in AD 

 

Default mode network functional activation differences in AD and HC 



Fig. 3. Salience network and visual network functional activation differences in AD and HC
 
3.2 Abnormal RSNs in AD Patients
 
The functional connectivity alterations in 
abnormal resting-state networks and their brain 
 

Fig. 4. Abnormal sub-regions in auditory network, default mode network and left & right 
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alience network and visual network functional activation differences in AD and HC

Abnormal RSNs in AD Patients 

The functional connectivity alterations in 
state networks and their brain 

regions of AD compared to HC are obtained from 
two -ample t-test (P >.03) is as shown in 
5, Table 2 depicts the list of altered functional 
connectivity sub regions in AD. 

 
 

regions in auditory network, default mode network and left & right 
executive network 

 
 
 
 

; Article no.AJMAH.57122 
 
 

 

alience network and visual network functional activation differences in AD and HC 

regions of AD compared to HC are obtained from 
as shown in Figs. 4-

2 depicts the list of altered functional 

 

regions in auditory network, default mode network and left & right 



Fig. 5. Abnormal sub-regions in sensory

Table 2. Altered functional connectivity sub regions of AD compared to HC

RSNs Regions Sign

AN L. Superior temporal 
gyrus 

positive

 R superior temporal 
gyrus 

positive

  negative
DMN Medial prefrontal 

gyrus 
positive

  negative
 Inferior parietal lobe positive
   
  negative
 PCC & Precunues positive
  negative
 Hippocampus positive
  negative
CEN left positive
 Right positive
SN Anterior cingulated 

cortex 
positive

 Insular NC
SMN  negative
VN High VN Positive
 Prim VN negative

 
4. DISCUSSION 
 

Resting-state fMRI data of AD vs
analyzed using ICA methods in which the 
decomposition of mixed components represents 
the actual brain activity and this will be 
very helpful in clinical treatment. By 
implementing this method of lower to higher 
order components extraction, all resting
network components with both minor and 
major regions grouping was found. These 
extracted components were identified and 
classified using masks with manually specified 
region of interest. Thus enabling to explore 
and compare all the regions of the six resting
states networks in both AD and HC revealing 
the significant group difference. This analysis 
proved that RSNs of AD patients are 
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regions in sensory-motor, anterior cingulated cortex & visual network

 
Altered functional connectivity sub regions of AD compared to HC

 
Sign Abnormal brain regions No of 

Voxels 
positive L middle temporal gyrus 97 

positive R IFG (P Orbitalis) 48 

negative L Superior temporal gyrus 50 
positive R superior medial gyrus 53 

negative L mid orbital gyrus 10 
positive L angular gyrus 87 
 R angular gyrus 115 
negative L Superior temporal gyrus 21 
positive R Lingual gyrus 51 
negative L Calcarine gyrus 45 
positive L temporal pole 78 
negative L medial temporal pole 78 
positive L IFG (P Orbitalis) 24 
positive R IFG (P Triangularis) 66 
positive L Superior medial gyrus 99 

NC   
negative R Superior parietal lobule 51 
Positive L Calcarine gyrus 62 
negative Inferior occipital gyrus 62 

state fMRI data of AD vs HC were 
analyzed using ICA methods in which the 
decomposition of mixed components represents 
the actual brain activity and this will be              
very helpful in clinical treatment. By 
implementing this method of lower to higher 

tion, all resting-state 
network components with both minor and              
major regions grouping was found. These 
extracted components were identified and 
classified using masks with manually specified 
region of interest. Thus enabling to explore              
and compare all the regions of the six resting-
states networks in both AD and HC revealing             
the significant group difference. This analysis 
proved that RSNs of AD patients are               

having abnormalities compared to HC. 
Demonstrating reduced connectivity in RSNs 
such as in DMN, AN, SMN, and VN which 
represents the cognitive and sensory networks 
and increased connectivity in attention networks 
such as central executive and salience network 
[34,35]. 
 

AN, Auditory network is the part of
lobe that processes auditory information. As 
suggested the basic auditory capacities in
should be normal, whereas more significant level 
of sound-related function should be increasingly 
damaged [36]. The auditory network includes 
superior temporal gyrus. Our results shows that 
increased FC in the left middle temporal gyrus 
and right inferior frontal gyrus P Orbitalis (IFG P 
Orbilatis). 
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motor, anterior cingulated cortex & visual network 

Altered functional connectivity sub regions of AD compared to HC 

Peak 
coordinate 
-45,-12,-18 

39,24,-21 

-63,-3,0 
6,60,30 

-6, 60,-3 
-39,-57,63 
45,-72,63 
-63,-45,24 
24,-57,6 
0,-78,21 
 
-27,6,-36 
-42,45,-9 
54,39,18 
3,48,30 

 
39,-48,66 
-15,-81,9 
-33,-87,0 

having abnormalities compared to HC. 
g reduced connectivity in RSNs 

such as in DMN, AN, SMN, and VN which 
represents the cognitive and sensory networks 
and increased connectivity in attention networks 
such as central executive and salience network 

AN, Auditory network is the part of the temporal 
lobe that processes auditory information. As 
suggested the basic auditory capacities in AD 
should be normal, whereas more significant level 

related function should be increasingly 
damaged [36]. The auditory network includes 

temporal gyrus. Our results shows that 
middle temporal gyrus 

and right inferior frontal gyrus P Orbitalis (IFG P 
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Default, salience and central executive networks 
are highly explored networks in AD. Results of 
salience and central networks appear to be 
unstable. Our results is consistent with earlier 
results, DMN showed decreased connectivity, 
whereas mean increased connectivity in the 
central network and in the regions of the salience 
network of AD [30]. This study shows decreased 
connectivity in posterior cingulated cortex, 
precuneus, inferior parietal lobe, medial 
prefrontal cortex and high functional connectivity 
in the hippocampus correlating with the previous 
results [37]. In the sub-regions DMN we 
observed increased connectivity in the right part 
of superior medial gyrus, parts of angular gyrus, 
right lingual gyrus and decreased connectivity in 
left parts of mid orbital gyrus, superior temporal 
gyrus and calcarine, the sub-region of 
hippocampus exhibits increased connectivity in 
left temporal pole and decreased connectivity in 
left medial temporal pole. 
 
Default mode networks and salience networks 
being the part of largest networks are stated to 
be the early signature in cognitive decline in the 
AD; the most recent work examined the 
alterations in AD at two slow frequency bands i.e 
0.073-0.198 and 0.01-0.027 [38] and had similar 
results with displaying decreased connectivity in 
DMN and increased connectivity in SN along the 
spectrum too are not variant thus consisting of 
the strong abnormal regions. 

 
CEN, the central executive network consists of 
the right and left parts of the dorsolateral 
prefrontal cortex (DLPFC) and the posterior 
parietal cortex (PPC).It plays an important role in 
the maintenance of information in working 
memory. Our results show increased connectivity 
in a mean central executive network of AD as 
reported [30], whereas sub-regions such as left 
IFG (P orbitalis) and right IFG (P triangularis) 
exhibits increased connectivity in AD compared 
to HC. 
 
SN, salience network as suggested by previous 
studies dynamically controls the default and 
executive networks; hence we can say that these 
three networks are functionally correlated [30], 
SN consists of anterior cingulated cortex and 
anterior insular, shows increased connectivity 
and their sub regions of left superior medial 
gyrus [39,40]. 

 
VN, Visual network consists of high and prim 
visual shows decrease connectivity in AD is 
allied with visual memory and visuospatial 

network [41]. High visual also called as extra 
striate visual network includes inferior occipital 
gyrus and prim visual lingual gyrus, calcarine 
gyrus, and parts of the cerebellum [42]. Our 
results show reduced functional connectivity in 
left inferior occipital gyrus and higher connectivity 
in left calcarine gyrus. 
 
Our study explores on major resting-state 
network regions, but there are other regions 
affected due to the disease progression. 
Distinguishing of these regions by examining the 
whole brain would result in more significant 
regions responsible for AD. Second main 
concern is about the subject’s count more 
number of data would lead to more significant 
abnormal regions. 
 

5. CONCLUSION 
 
The resting-state fMRI has provided a better 
understanding of the resting-state networks in 
AD and normal’s. Major RSNs or group of 
regions that exhibit alterations in spontaneous 
BOLD fluctuations i.e functional connectivity 
differences have been identified in AD compared 
to normals. Parts of temporal gyrus and inferior 
frontal gyrus along with lingual gyrus, calcarine 
gyrus, angular gyrus, and temporal pole appear 
to be abnormal in Alzheimer’s during rest. From 
this study we were able to locate the core 
regions that would play a major role in the 
cerebrum damage due to the disease and further 
these regions would be targeted in performing 
the classification Alzheimer’s with controls. 
 

CONSENT  
 
As per international standard or university 
standard written participants consent has been 
collected and preserved by the author(s). 
 

ETHICAL APPROVAL  
 

As per the ADNI protocol, all procedure 
performed is this study involving human 
participants were in accordance with the ethical 
standards of the institutional and/or national 
research committee and with 1964 Helsinki 
declaration and its later amendments or 
comparable ethical standards. More details can 
be found at adni.loni.usc.edu. 
 

ACKNOWLEDGEMENT 
 

Data collection and sharing for this project was 
funded by ADNI (National Institute of Health 
Grants U01 AG024904). 



 
 
 
 

Usha and Dr. Suma; AJMAH, 18(5): 43-54, 2020; Article no.AJMAH.57122 
 
 

 
51 

 

COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 
REFERENCES 
 
1. DeTure MA, Dickson DW. The 

neuropathological diagnosis of Alzheimer’s 
disease. Mol Neurodegener. 2019;14(1): 
32. 
PMCID: PMC6679484 
Available:http://dx.doi.org/10.1186/s13024-
019-0333-5 

2. La Iglesia-Vaya M de, Molina-Mateo J, 
Jose MSA, Marti-Bonmati L. Brain 
connections – Resting State fMRI 
functional connectivity. In: Fountas K, 
Editor. Novel Frontiers of Advanced 
Neuroimaging; 2013. 

3. Lv H, Wang Z, Tong E, Williams LM, 
Zaharchuk G, Zeineh M, Goldstein-
Piekarski AN, Ball TM, Liao C, Wintermark 
M. Resting-state functional MRI: 
Everything that non-experts have always 
wanted to know. AJNR Am J Neuroradiol. 
2018;39(8):1390–1399. 
PMCID: PMC6051935 
Available:http://dx.doi.org/10.3174/ajnr.A5
527 

4. Fleisher AS, Sherzai A, Taylor C, 
Langbaum JBS, Chen K, Buxton RB. 
Resting-state BOLD networks versus task-
associated functional MRI for 
distinguishing Alzheimer’s disease risk 
groups. Neuroimage. 2009;47(4):1678–
1690. 
PMCID: PMC2722694 
Available:http://dx.doi.org/10.1016/j.neuroi
mage.2009.06.021 

5. Yao Z, Hu B, Zhao L, Liang C. Analysis of 
gray matter in AD patients and MCI 
subjects based Voxel-based morphometry. 
Brain Informatics. 2011;209–217. 
Available:http://dx.doi.org/10.1007/978-3-
642-23605-1_22 

6. Li Y, Wang X, Li Y, Sun Y, Sheng C, Li H, 
Li X, Yu Y, Chen G, Hu X, Jing B, Wang D, 
Li K, Jessen F, Xia M, Han Y. Abnormal 
resting-state functional connectivity 
strength in mild cognitive impairment and 
its conversion to Alzheimer’s disease. 
Neural Plast. 2016;4680972. 
PMCID: PMC4710946 
Available:http://dx.doi.org/10.1155/2016/46
80972 

7. Farahani FV, Karwowski W, Lighthall NR. 
Application of graph theory for identifying 
connectivity patterns in human brain 
networks: A systematic review. Front 
Neurosci. 2019;13:585. 
PMCID: PMC6582769 
Available:http://dx.doi.org/10.3389/fnins.20
19.00585 

8. Bi X-A, Sun Q, Zhao J, Xu Q, Wang L. 
Non-linear ICA analysis of resting-state 
fMRI in mild cognitive impairment. Front 
Neurosci. 2018;12:413. 
PMCID: PMC6018085 
Available:http://dx.doi.org/10.3389/fnins.20
18.00413 

9. Khazaee A, Ebrahimzadeh A, Babajani-
Feremi A. Application of advanced 
machine learning methods on resting-state 
fMRI network for identification of mild 
cognitive impairment and Alzheimer’s 
disease. Brain Imaging Behav. 2016;10(3): 
799–817. 
PMID: 26363784 
Available:http://dx.doi.org/10.1007/s11682-
015-9448-7 

10. Santana AN, Cifre I, de Santana CN, 
Montoya P. Using deep learning and 
resting-state fMRI to classify chronic pain 
conditions. Front Neurosci. 2019;13:1313. 
PMCID: PMC6929667 
Available:http://dx.doi.org/10.3389/fnins.20
19.01313 

11. Badhwar A, Tam A, Dansereau C, Orban 
P, Hoffstaedter F, Bellec P. Resting-state 
network dysfunction in Alzheimer’s 
disease: A systematic review and meta-
analysis. Alzheimers Dement. 2017;8:73–
85. 
PMCID: PMC5436069 
Available:http://dx.doi.org/10.1016/j.dadm.
2017.03.007 

12. Iraji A, Calhoun VD, Wiseman NM, 
Davoodi-Bojd E, Avanaki MRN, Haacke 
EM, Kou Z. The connectivity domain: 
Analyzing resting-state fMRI data using 
feature-based data-driven and model-
based methods. Neuroimage. 2016;134: 
494–507. 
PMCID: PMC4957565 
Available:http://dx.doi.org/10.1016/j.neuroi
mage.2016.04.006 

13. Cole DM, Smith SM, Beckmann CF. 
Advances and pitfalls in the analysis and 
interpretation of resting-state FMRI data. 
Front Syst Neurosci. 2010;4:8. 
PMCID: PMC2854531 



 
 
 
 

Usha and Dr. Suma; AJMAH, 18(5): 43-54, 2020; Article no.AJMAH.57122 
 
 

 
52 

 

Available:http://dx.doi.org/10.3389/fnsys.2
010.00008 

14. Qureshi MNI, Ryu S, Song J, Lee KH, Lee 
B. Evaluation of functional decline in 
Alzheimer’s dementia using 3D deep 
learning and group ICA for rs-fMRI 
measurements. Front Aging Neurosci. 
2019;11:8. 
PMCID: PMC6378312 
Available:http://dx.doi.org/10.3389/fnagi.20
19.00008  

15. Tian L, Kong Y, Ren J, Varoquaux G, Zang 
Y, Smith SM. Spatial vs. temporal features 
in ICA of resting-state fMRI - A quantitative 
and qualitative investigation in the context 
of response inhibition. PLoS One. 
2013;8(6):e66572. 
PMCID: PMC3688987 
Available:http://dx.doi.org/10.1371/journal.
pone.0066572 

16. Iraji A, Faghiri A, Lewis N, Fu Z, DeRamus 
T, Qi S, Rachakonda S, Du Y, Calhoun V. 
Ultra-high-order ICA: An exploration of 
highly resolved data-driven representation 
of intrinsic connectivity networks (sparse 
ICNs). International Society for Optics and 
Photonics. 2019;111380I. 
[Cited 2020 May 28] 

17. Lu J, Zhang H, Hameed NUF, Zhang J, 
Yuan S, Qiu T, Shen D, Wu J. An 
automated method for identifying an 
independent component analysis-based 
language-related resting-state network in 
brain tumor subjects for surgical planning. 
Sci Rep. 2017;7(1):13769. 
PMCID: PMC5653800 
Available:http://dx.doi.org/10.1038/s41598-
017-14248-5 

18. Griffanti L, Douaud G, Bijsterbosch J, 
Evangelisti S, Alfaro-Almagro F, Glasser 
MF, Duff EP, Fitzgibbon S, Westphal R, 
Carone D, Beckmann CF, Smith SM. Hand 
classification of fMRI ICA noise compo-
nents. Neuroimage. 2017;154:188–205. 
PMCID: PMC5489418 
Available:http://dx.doi.org/10.1016/j.neuroi
mage.2016.12.036 

19. Wang Y, Li T-Q. Dimensionality of ICA in 
resting-state fMRI investigated by feature 
optimized classification of independent 
components with SVM. Front Hum 
Neurosci. 2015;9:259. 
PMCID: PMC4424860 
Available:http://dx.doi.org/10.3389/fnhum.2
015.00259 

20. Vergun S, Gaggl W, Nair VA, Suhonen JI, 
Birn RM, Ahmed AS, Meyerand ME, 

Reuss J, DeYoe EA, Prabhakaran V. 
Classification and extraction of resting 
state networks using healthy and epilepsy 
fMRI data. Front Neurosci. 2016;10:     
440. 
PMCID: PMC5037187 
Available:http://dx.doi.org/10.3389/fnins.20
16.00440 

21. Petersen RC, Aisen PS, Beckett LA, 
Donohue MC, Gamst AC, Harvey DJ, Jack 
CR Jr, Jagust WJ, Shaw LM, Toga AW, 
Trojanowski JQ, Weiner MW. Alzheimer’s 
Disease Neuroimaging Initiative (ADNI): 
Clinical characterization. Neurology. 
2010;74(3):201–209. 
PMCID: PMC2809036 
Available:http://dx.doi.org/10.1212/WNL.0b
013e3181cb3e25 

22. Chao-Gan YAN. Data Processing 
Assistant for Resting-State fMRI 
(DPARSF). The R-fMRI Network; 2014. 
[Cited 2020 May 28] 
Available:http://rfmri.org/DPARSF 

23. Erhardt EB, Rachakonda S, Bedrick EJ, 
Allen EA, Adali T, Calhoun VD. 
Comparison of multi-subject ICA methods 
for analysis of fMRI data. Hum Brain 
Mapp. 2011;32(12):2075–2095. 
PMCID: PMC3117074 
Available:http://dx.doi.org/10.1002/hbm.21
170 

24. Von dem Hagen EAH, Stoyanova RS, 
Baron-Cohen S, Calder AJ. Reduced 
functional connectivity within and between 
“social” resting state networks in autism 
spectrum conditions. Soc Cogn Affect 
Neurosci. 2013;8(6):694–701. 
PMCID: PMC3739917 
Available:http://dx.doi.org/10.1093/scan/ns
s053 

25. Majeed W, Avison MJ. Robust data driven 
model order estimation for independent 
component analysis of FMRI data with low 
contrast to noise. PLoS One. 2014;9(4): 
e94943. 
PMCID: PMC4005775 
Available:http://dx.doi.org/10.1371/journal.
pone.0094943 

26. Maldjian JA. WFU Pickatlas. 
Available:http://www.fmri.wfubmc.edu/dow
nload.htm 

27. De Lacy N, Calhoun VD. Dynamic 
connectivity and the effects of maturation 
in youth with attention deficit hyperactivity 
disorder. Netw Neurosci. 2019;3(1):195–
216. 
PMCID: PMC6372020 



 
 
 
 

Usha and Dr. Suma; AJMAH, 18(5): 43-54, 2020; Article no.AJMAH.57122 
 
 

 
53 

 

Available:http://dx.doi.org/10.1162/netn_a_
00063 

28. Castellazzi G, Palesi F, Casali S, Vitali P, 
Sinforiani E, Wheeler-Kingshott CAM, 
D’Angelo E. A comprehensive assessment 
of resting state networks: Bidirectional 
modification of functional integrity in 
cerebro-cerebellar networks in dementia. 
Front Neurosci. 2014;8:223. 
PMCID: PMC4115623 
Available:http://dx.doi.org/10.3389/fnins.20
14.00223 

29. Rosazza C, Aquino D, D’Incerti L, Cordella 
R, Andronache A, Zacà D, Bruzzone MG, 
Tringali G, Minati L. Preoperative mapping 
of the sensorimotor cortex: Comparative 
assessment of task-based and resting-
state FMRI. PLoS One. 2014;9(6):e98860. 
PMCID: PMC4051640 
Available:http://dx.doi.org/10.1371/journal.
pone.0098860 

30. Joo SH, Lim HK, Lee CU. Three large-
scale functional brain networks from 
resting-state functional MRI in subjects 
with different levels of cognitive 
impairment. Psychiatry Investing. 2016; 
13(1):1–7. 
PMCID: PMC4701672 
Available:http://dx.doi.org/10.4306/pi.2016.
13.1.1 

31. Moerel M, De Martino F, Formisano E. An 
anatomical and functional topography of 
human auditory cortical areas. Front 
Neurosci. 2014;8:225. 
PMCID: PMC4114190 
Available:http://dx.doi.org/10.3389/fnins.20
14.00225 

32. Wang P, Zhou B, Yao H, Zhan Y, Zhang Z, 
Cui Y, Xu K, Ma J, Wang L, An N, Zhang 
X, Liu Y, Jiang T. Aberrant intra- and inter-
network connectivity architectures in 
Alzheimer’s disease and mild cognitive 
impairment. Sci Rep. 2015;5:14824. 
PMCID: PMC4594099 
Available:http://dx.doi.org/10.1038/srep148
24 

33. Zheng W, Liu X, Song H, Li K, Wang Z. 
Altered functional connectivity of cognitive-
related cerebellar subregions in 
Alzheimer’s disease. Front Aging 
Neurosci. 2017;9:143. 
PMCID: PMC5432635 
Available:http://dx.doi.org/10.3389/fnagi.20
17.00143 

34. Sorg C, Riedl V, Mühlau M, Calhoun VD, 
Eichele T, Läer L, Drzezga A, Förstl H, 
Kurz A, Zimmer C, Wohlschläger AM. 

Selective changes of resting-state 
networks in individuals at risk for 
Alzheimer’s disease. Proc Natl Acad Sci 
USA. 2007;104(47):18760–18765. 
PMCID: PMC2141850 
Available:http://dx.doi.org/10.1073/pnas.07
08803104 

35. Chand GB, Wu J, Hajjar I, Qiu D. 
Interactions of the salience network and its 
subsystems with the default-mode and the 
central-executive networks in normal aging 
and mild cognitive impairment. Brain 
Connect. 2017;7(7):401–412. 
PMCID: PMC5647507 
Available:http://dx.doi.org/10.1089/brain.20
17.0509 

36. Lu J, Testa N, Jordan R, Elyan R, Kanekar 
S, Wang J, Eslinger P, Yang QX, Zhang B, 
Karunanayaka PR. Functional connectivity 
between the resting-state olfactory network 
and the hippocampus in Alzheimer’s 
disease. Brain Sci. 2019;9(12). 
PMCID: PMC6955985 
Available:http://dx.doi.org/10.3390/brainsci
9120338 

37. Xue J, Guo H, Gao Y, Wang X, Cui H, 
Chen Z, Wang B, Xiang J. Altered directed 
functional connectivity of the hippocampus 
in mild cognitive impairment and 
Alzheimer’s disease: A resting-state fMRI 
study. Front Aging Neurosci. 2019;11:326. 
PMCID: PMC6905409 
Available:http://dx.doi.org/10.3389/fnagi.20
19.00326 

38. Wang P, Li R, Yu J, Huang Z, Li J. 
Frequency-dependent brain regional 
homogeneity alterations in patients with 
mild cognitive impairment during working 
memory state relative to resting state. 
Front Aging Neurosci. 2016;8:60. 
PMCID: PMC4805610 
Available:http://dx.doi.org/10.3389/fnagi.20
16.00060 

39. Cera N, Esposito R, Cieri F, Tartaro A. 
Altered cingulate cortex functional 
connectivity in normal aging and mild 
cognitive impairment. Front Neurosci. 
2019;13:857. 
PMCID: PMC6753224 
Available:http://dx.doi.org/10.3389/fnins.20
19.00857 

40. Liu X, Chen X, Zheng W, Xia M, Han Y, 
Song H, Li K, He Y, Wang Z. Altered 
functional connectivity of insular sub 
regions in Alzheimer’s disease. Front 
Aging Neurosci. 2018;10:107. 
PMCID: PMC5905235 



 
 
 
 

Usha and Dr. Suma; AJMAH, 18(5): 43-54, 2020; Article no.AJMAH.57122 
 
 

 
54 

 

Available:http://dx.doi.org/10.3389/fnagi.20
18.00107 

41. Badhwar A, Tam A, Dansereau C, Orban 
P, Hoffstaedter F, Bellec P. Resting-state 
network dysfunction in Alzheimer’s 
disease: A systematic review and meta-
analysis  Alzheimer’s Dement. 2017;8:73–
85. 
PMCID: PMC5436069 
Available:http://dx.doi.org/10.1016/j.dadm.
2017.03.007 

42. Cai S, Chong T, Zhang Y, Li J, von 
Deneen KM, Ren J, Dong M, Huang L, 
Alzheimer’s disease neuroimaging 
initiative. altered functional connectivity of 
fusiform gyrus in subjects with amnestic 
mild cognitive impairment: A resting-state 
fMRI study. Front Hum Neurosci. 
2015;9:471. 
PMCID: PMC4550786 
Available:http://dx.doi.org/10.3389/fnhum.2
015.00471 

_________________________________________________________________________________ 
© 2020 Usha and Dr Suma; This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited. 

 
 

 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://www.sdiarticle4.com/review-history/57122 


