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Next-generation sequencing (NGS) technologies have provided great opportunities to
analyze pathogenic microbes with high-resolution data. The main goal is to accurately
detect microbial composition and abundances in a sample. However, high similarity
among sequences from different species and the existence of sequencing errors pose
various challenges. Numerous methods have been developed for quantifying microbial
composition and abundance, but they are not versatile enough for the analysis of
samples with mixtures of noise. In this paper, we propose a new computational method,
PGMicroD, for the detection of pathogenic microbial composition in a sample using
NGS data. The method first filters the potentially mistakenly mapped reads and extracts
multiple species-related features from the sequencing reads of 16S rRNA. Then it
trains an Support Vector Machine classifier to predict the microbial composition. Finally,
it groups all multiple-mapped sequencing reads into the references of the predicted
species to estimate the abundance for each kind of species. The performance of
PGMicroD is evaluated based on both simulation and real sequencing data and is
compared with several existing methods. The results demonstrate that our proposed
method achieves superior performance. The software package of PGMicroD is available
at https://github.com/BDanalysis/PGMicroD.

Keywords: microbe composition detection, microbe abundance estimation, next-generation sequencing, 16S
rRNA, machine learning

INTRODUCTION

In the last decade, metagenomics has emerged as a remarkable event in the study of microbial
ecology (Lindner and Renard, 2013). The detection of pathogenic microbial composition (i.e.,
species and their abundance) is very important in this field since it can provide valuable information
for supporting pathogenic treatment and in the fields of ecology and human health (Chaudhary
et al., 2015). Next-generation sequencing (NGS) provides an unprecedented opportunity to explore
the composition of microbes in a sample (Fuhrman, 2012). 16S rRNA from microbes contains
regions of highly conserved and highly variable sequences, providing a reliable substrate for species
identification (Teeling and Glockner, 2012). Currently, a set of methods have been developed to
analyze microbial composition using 16S data. One early approach, BLAST (Scott and Madden,
2004),calculates the similarity score for local alignments of reads against reference sequences to
explore the microbial diversity of complex environments.
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Recently, similarity-based clustering algorithms (Kopylova
et al., 2012; Mahe et al., 2014; Albanese et al., 2015; Al-
Ghalith et al., 2016) have superseded the traditional technologies.
For example, Mothur (Yin et al., 2014) detects the species
in samples via clustering the whole sequencing reads into
an operational taxonomic unit (OTU) and then selects the
representative read to map to the reference library. QIIME
(Caporaso et al., 2010) uses open reference OTU picking for
statistical analysis of clusters, abundances, and taxonomy. Open-
reference OTU picking uses a database of known 16S genes
to create OTU clusters while it allows for the formation of
OTUs, which have sequences sufficiently different from the
references. Phylogenetic techniques, such as neighbor-joining
(Price et al., 2009) and Bayesian posterior probability (Matsen
et al., 2010), have emerged, which can make specific taxonomic
assignments but within a large computational burden (Bazinet
and Cummings, 2012). Also, Karp (Reppell and Novembre, 2018)
and Kallisto (Bray et al., 2016) used a k-mer based pseudo
alignment approach to classify 16S rRNA reads using a reference
library of known species and then deduced the types of species
and their abundance according to the classified reads. One of
the key points is to derive a reliable mapping result of the
reads to the references. However, high similarity among species
sequences and sequencing errors make it extremely difficult.
Harp (Kessner et al., 2013) analyzed microbial composition
by estimating haplotype frequencies based on an expectation-
maximization algorithm. Such a method allows for mapping
uncertainty in the reads but relies on a probability model. No
available methods are powerful enough to fully explore microbial
composition in the case of highly mixed species in a sample.

In this paper, we propose a new computational tool,
PGMicroD, to detect pathogenic species and their abundance
using 16S rRNA. After filtering the potentially mistakenly
mapped reads, it extracts multiple species-related features based
on a deep exploration of the statuses of read alignment
and then trains an Support Vector Machine (SVM) classifier
to predict types of species. Subsequently, all the multiple-
mapped reads from 16S are re-mapped to the references of
the predicted species, and the relative abundance of each
species is estimated by counting the mapped reads. We test
the performance of PGMicroD based on both simulation and
real sequencing data, and we show that the new proposed tool
outperforms several existing methods. Machine learning has a
wide range of applications in the field of pattern recognition,
especially for classification problems, because of high speed and
high prediction accuracy. We start from the perspective of a
classification algorithm, fully considering high similarity among
species, sequencing errors, and the status of read distributions, to
achieve more accurate species detection.

In section “Materials and Methods,” we demonstrate the
implementation of the PGMiroD method, including the primary
theorem and method implementation. In section “Results and
Discussion,” we explore three major factors associated with
the performance of detecting pathogenic species and describe
experiments to test PGMicroD on simulation and real datasets.
Finally, the conclusions are summarized in section “Discussion
and Conclusion.”

MATERIALS AND METHODS

Workflow of PGMicroD
The workflow chart of PGMicroD is depicted in Figure 1.
It consists of three primary steps: preprocessing and filtering,
species prediction, and abundance estimation.

(1) Preprocessing and filtering: The input data is a FASTQ file
from the sample to be analyzed and is aligned to the reference
library via the classic algorithm BWA (Li and Durbin, 2009). The
unsuccessfully aligned reads are removed from the FASTQ file.
Seven hypervariable regions (HVRs) (V2–V8) in 16S rRNA are
separated from each of the reference library via the EMBOSS Tool
(Mullan and Bleasby, 2002). For each aligned read, we propose
a new mapping score to express the confidence of one read
originating from a specific reference. Then, the aligned reads with
low scores are filtered from the alignment result.

(2) Species prediction: After filtering the mapped reads with
low mapping scores, the remainder of the mapped reads are
used to predict species via further analysis. For one species
reference, we extract three types of signatures as features (which
have implications for composition detection) to feed into the
trained SVM classifier to determine whether this species exists in
the sample or not.

(3) Abundance estimation: With the detected species, the
filtered reads that aligned to multiple references (multiple-
mapped reads) are re-aligned to the corresponding references.
Compared to the first-round alignment, where all the references
in the library are used and false species references have a
great interference on the mapping results, the alignment on the
detected species references is more reasonable. Finally, we use the
mapped reads to estimate the relative abundance of each species.

We provide further details on the principles underlying this
work and the implementation of each of the steps.

Preprocessing and Filtering
For the successfully mapped reads (i.e., they are successfully
mapped to at least one reference in the reference database), we
carry out further analysis for the alignment status. Generally,
one mapped read can display three types of signatures: mapping
quality, mapping gaps, and mapped subsequences overlapped
with the HVRs. For a clear understanding of the mapping
signatures, we depict a mapping example in Figure 2. The
example shows that there is one gap, three allele mismatches, and
two subsequences covering two HVRs.

Mapping quality, which can be observed from the SAM file
of the alignment result, displays the mapping confidence of
each position for one read, including the match and mismatch.
Due to the co-existence of sequencing errors, disturbance of
other unknown species, and high similarity between pathogenic
species, there are several multiple-mapped reads. Theoretically,
each read should have originated from one species. The
phenomenon of multiple mapping could have several major
characteristics: (1) the reads are consistent across multiple species
and are thus mapped to the corresponding references with high
confidence; (2) the reads are mapped to the extremely similar
references; (3) for one read mapped to multiple references,
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FIGURE 1 | The framework of the PGMicroD method for predicting pathogenic microbial species and their abundances by using NGS data.

FIGURE 2 | Three alignment signatures of one read aligned to one reference: mapping gap, allele mismatch, and subsequences falling into HVRs.

the mapping confidence might be different, i.e., some of them
might have low confidence. With such considerations, we make
a further analysis of the mapped reads to improve mapping
effectiveness. We start from each reference mapped by at least one
read and then determine if each mapped read should be retained
or discarded from the reference. For one read, if it owns higher
mapping quality, a smaller amount of gap, and a larger area of
subsequence overlapped with HVRs, then its mapping result has
more confidence.

Therefore, we define three indices for measuring above three
signatures. For convenient description, we assume the reference
set as Z = {z1, z2, . . ., zM} with the total number of references
M, and the sequencing read set as R = {r1, r2, . . ., rN} with the
total number of reads N. For one read ri with i∈1, . . ., N and
length Li, let (ri[1], ri[2], . . ., ri[Li]) be the base call vector at
each position along the read, and (Qi[1], Qi[2], . . ., Qi[Li]) be
the base quality score vector of this read. For reference sequence
zj with j∈1, . . ., M aligned by the read ri, let (zj,i[1], zj,i[2], . . .,

zj,i[Li]) give the base calls vector of reference zj corresponding to
every position of the read. Note the entries in this vector may not
be contiguous due to insertions, deletions, or because the reads
are paired-end. With the mapping quality, we could calculate the
corresponding probability for the sequencing error vector, (qi[1],
qi[2], . . ., qi[Li]), by using the expression of Qi[k] =−10∗lg(qi[k])
with k∈1, 2, . . ., Li. Accordingly, the confidence (Pi, j) of the read
ri mapped to the reference zj could be expressed as:

pi,j =

Li∏
k=1

p(ri[k]), where

p(ri[k]) =
{

1− qi[k], ri[k] = zj,i[k]
qi[k]/3, rj[k] 6= zj,i[k]

. (1)

In the formulation (1), because each base is independent of
another, we use (Pi, j) as a joint probability of all bases. It is noted
that (Pi, j) is a positive value always less than 1.
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As far as the mapping gap is concerned, the phenomenon of
insertion, deletion, soft mapping, and hard mapping is regarded
as a “gap.” If the read ri is mapped to the reference zj, the mapping
gap is quantified as the log2 conversion of the summation of gaps,
which is expressed as:

Rgap = log2

( K∑
k=1

xk + 1

)
. (2)

where xk is the width of the k-th gap and K is the number of
gaps in the read. In formulation (2), xk means the width of the
k-th gap, which is greater than or equal to 0. The sum of the
whole gap is a positive integer greater than 0. By taking the log,
it can be transformed to [0,1]. It is noted that when there is
no gap in the read, the log operation makes no sense. Hence,
we add a constant value 1 into the formulation. If exponential
operation is used in xk, the result will be more than 1. The
approach cannot keep the quantization of gap consistent with the
dimension of (Pi, j).

As for HVRs, it is well-known that the similarity of 16S rRNA
on the species/strain level is up to 94%. The areas of HVRs
display an important role for microbe composition identification
since they are usually varying across species (whereas non-HVRs
are usually consistent across species). Thus, the mapped read
covering HVRs is significant for indicating a species reference.
Accordingly, after ri aligns to zj, the quantification of ri for HVRs
is expressed as Eq. 3.

hi,j =
length of squence of ri falling into HVRs of zj

length of ri
. (3)

where hi,j means the ratio of length of sequence in i-th read falling
into HVRs of j-th reference after alignment. We combine the
above three signatures and define a new mapping score (Si,j) for
the read ri mapped to the reference zj:

Si,j =
Pi,j + hi,j

1+ Rgap
. (4)

In formulation (4), (Pi,j) and hi,j are positively related to the
possibility of species existence, but Rgap is negatively related
to it. The above three values range in the same dimension;
hence, we make them into ratio form. To avoid the case that
the denominator is 0, we add the adjustment factor 1 in the
denominator. The mapping score of each read can be computed
via the formula (4) after alignment. If the score (Si,j) is less
than a given threshold δ, then the read ri is filtered from
the alignment result. These reads with low mapping score are
regarded as potential incorrect alignment status. We carry out a
series of experiments to choose the appropriate value as δ and
demonstrate the influence of the threshold value on the amount
of correctly mapped reads.

Species Prediction by Training an SVM
Classifier
Species prediction (i.e., microbe composition detection) in a
sample can be converted into a binary classification problem.

Specifically, we extract multiple features associated with the
existence of species in the sample, and establish a classifier
to determine whether each species from the reference library
exists in the sample or not. In the following text, we describe
the implementation of the classifier and what features are
extracted in detail.

Theorem of the SVM Classifier
We choose the SVM as the classifier for our problem, which is
a state-of-the-art large margin classifier and gaining popularity
in pattern recognition (Schuldt et al., 2004). The large-margin
principle of SVM can avoid an over-fitting of classification. In
addition, the kernel technique in SVM can resolve the linearly
non-separable problem by making non-linear conversion of
original data, which reflects distribution characteristics of the
converted data in the extended space. Here, we provide a brief
introduction to the theorem underlying SVM (Bennett and
Campbell, 2000). The problem is to separate a set of data {(x1,
y1), (x2, y2), . . ., (xn, yn)} into two classes, where xi denotes a
feature vector and yi ∈ {−1,+1} denotes its label. Generally, that
two-class data can be separated by the hyperplane w·x + b = 0 in
some specific space, where w is normal to the hyperplane and b
controls the hyperplane to move parallel to itself. When we have
no prior knowledge about the data distribution, then the optimal
hyperplane is the one that can maximize the margin (Catoni,
2004). Generally, not all samples can be classified correctly. If
the distance from the wrong-classified samples to the hyperplane
is the smallest, one SVM classifier would be considered as
an effective machine. Here, the relaxation factor in the SVM
algorithm, ξi, is used to measure the distance from one wrong-
classified sample xi to the hyperplane. The optimal values for
w and b can be found by solving the constrained minimization
problem shown in Eq. 5.

J = min
w

(
1
2
||w|| + C ·

N∑
i=1

ξi

)

s.t. yi · (wT
· xi + b) ≥ 1− ξi (5)

ξi ≥ 0 (1 ≤ i ≤ N).

The penalty parameter C is used to adjust the weight for the
error of wrong-classified samples. The kernel technique (Bašić
and Ribarić, 2002) in SVM can resolve the linearly non-separable
problem by making non-linear conversion at original data, which
reflects the distribution characteristics of the converted data
in the extended space. Here, the RBF (radial basis function)
formatted as Eq. 6 is utilized as the kernel function in SVM
classifier, which supposes the samples subordinating to Gaussian
distribution in the real world.

Krbf = exp(−γ · ||x1 − x2||
2). (6)

where the gamma parameter γ can dominate Gaussian influence
range of the support vectors in the extended space. The larger
(smaller) the gamma is, the smaller (larger) the difference
between samples is in the extended space, and thus an overfitting
(under fitting) situation would be more likely. As for the
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assignment of values for the parameters {C, gamma} of SVM, we
set a value interval for each of the parameters, and we adopt the
GridSearch method to search the optimal values via 10-fold cross-
validation. The details are given in section “Training of the SVM
Classifier.”

Extraction of Multiple Features
To detect microbe composition in a sample, we extract three
features (Coverage, GapScore, HVRScore) for each reference in
the library, which are fed into the SVM classifier to predict
whether this species exists in the sample.

“Coverage” is the proportion of base positions aligned by reads
for all reference positions, which is positively correlated with
sequencing depth. For example, if coverage of one reference is
98%, then the remaining 2% of bases are assumed to be not
aligned by any reads. In the specific sequencing depth, the higher
one species coverage is, the more likely it exist in the samples. We
calculate the coverage of each species aligned by reads after the
filtering process:

Coverage =
the amount of base position aligned by reads

the total length of reference
(7)

“GapScore” is used to measure the status of the gap for one
reference after the alignment process, which can describe the
existing probability of this species in the aspect of spatial
distribution. The gap is a certain segment in one reference that is
not mapped with any reads. In theory, for the ideal sequencing
condition, we assume that one species exists in the samples
if its reference is evenly covered by reads without any more
gaps. However, it is a fact of unavoidable sequencing error and
insufficient sequencing depth that product gaps will occur during
the alignment process. The width, amount, and occurrence area
(in HVRs or not) of the gap is the critical factor to identify species
composition in samples. We designate G = {g1, g2, . . ., gn} as the
gap set of one reference, where gi is the length of the i-th gap. The
GapScore is calculated by the following equation:

Gapscore =
∑n

i=1 gi

|G|
. (8)

During extracting the HVRs of 16S rRNA using EMBOSS
software, the V1 and V9 regions are not concluded. For V1,
using the known primer pairs, only up to 25% sequences could be
extracted from the total sequences; for HVR V9, the primer pairs
are not found (primer pairs seen in Supplementary Table 1). Due
to the high similarity of 16S rRNA gene sequences, some specific
regions of one 16S reference, such as conserved regions, would
be mistakenly aligned by abundant reads from other species. In
this case, high variable regions, however, would be aligned by
fewer reads (or even none), which generates a gap in HVRs of one
reference. “HVRScore” describes the score of HVRs in one 16S,
which is positively correlated with the existing probability of this
reference. We assume [QSIImage] as the length of the i-th HVR,
and bi as the length of the gap in the i-th HVR after alignment;
then, “HVRScore” of each given reference can be calculated as

shown below:

HVRScore =
8∑

i=2

e−bi/ai . (9)

In formulation (9), using exponential operation would keep
the value of the HVRScore in [0, 1]. This approach will
make (Coverage, GapScore, HVRScore) three values in
the same dimension.

Abundance Estimation
Based on the predicted species using the SVM classifier, we
further estimate their relative abundances. This will help to
understand the abundance of each pathogenic species in a
human body. Generally, the number of reads mapped to each
predicted species provides an important clue for the estimation.
Due to the high similarity between different species references,
the phenomenon of read multiple-mapping is common. In
the filtering process, the reads with small mapping scores are
removed. Such a process can help to improve the prediction of
species types. However, for the species abundance estimation, it
is necessary to retrieve the removed multiple-mapped reads. This
is because they may be originally disturbed by the non-existing
species. Now, with the non-existing species discriminated from
the existing species, the originally removed multiple-mapped
reads might be uniquely mapped to some existing species. Based
on this consideration, we re-align the multiple-mapped reads to
the references of the predicted species and calculate the fractions
of the species according to the number of mapped reads. For one
predicted species, its abundance is estimated as the ratio of the
number of mapped reads to the total number of sequencing reads.

RESULTS AND DISCUSSION

Simulation Data From the 16S rRNA
To evaluate the ability of PGMicroD to detect microbe
compositions and estimate the species abundances, we simulated
sequence samples on the 16S rRNA in the following way.
First, a vector of abundances corresponding to attained
species sequences was generated by drawing from a Dirichlet
distribution. Then, we use the ART (Huang et al., 2012) software
to produce synthetic NGS reads according to those references.
Here, the references are the sequences from the 16S rRNA.
ART generates simulated sequencing reads by emulating the
sequencing process with built-in, technology-specific read error
models and base quality value profiles, which are parameterized
empirically in a large training dataset. Hence, three types of
common sequencing errors—base substitutions, insertion, and
deletion—could be introduced into the simulated samples. As for
the settings of sequencing read length, coverage depth, and indel
error, we will make a detailed description following.

Performance Evaluation Approach
Considering that our proposed method aims to detect types of
species and their relative abundance, we choose two commonly
used measurements (Sohn et al., 2014) to quantify performance:
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F1_score and relative root mean squared error (RRMSE), which
are given as Eqs 10 and 11.

F1_score =
2 · precision · recall
precision+ recall

. (10)

RRMSE =

√√√√ 1
N
·

N∑
i=1

(τi − ti)2

ti
. (11)

Equation 10 is used to evaluate the performance of detecting
species, where precision is the proportion of true positives in
the total predicted species, and recall is the proportion of true
positives in the total ground truth. In Eq. 11, N is the number
of the true positives (truly existing species) in a sample, ti is
the estimated abundance of the i-th reference, and τi is the true
abundance of the i-th reference.

For evaluating the performance of methods on real sequencing
samples, where the answers are usually unknown, we utilize the
overlapping density score (ODS; Yuan et al., 2018) to evaluate
performance. The ODS value of the i-th method can be calculated
using Eq. 12.

ODS(i) = mean(i)overlap ×
mean(i)overlap

N(i)
,

mean(i)overlap =

∑m
j=1,i6=j |Si ∩ Sj|

m− 1
. (12)

N(i) denotes the number of species detected by the i-th method
in one sample, Si represents the set of microbial species detected
by the i-th method, m is the total number of methods to be
compared, and the item mean(i)overlap denotes the mean number
of species of the i-th method overlapping with other methods.

Simulation Experiments on Filtering
Threshold Values
Most reads from a sample suffer uncertainty in mapping to
references, due to the high similarity among species and the
contamination of unknown organisms. To preserve the accuracy
of estimating microbial abundance in the presence of reads from
unknown organisms, we implement a filter on the mapping score.

We simulated 11 samples including 1,210,410 sequencing
reads with completely different composition and abundance.
Specifically, we randomly select 20 references to form the original
reference library as a new reference library for each sample.
Then, 10 references are chosen from the new reference library
as the ground-truth species for one sample. The unknown noised
species, i.e., they are not included in the new reference library,
are combined with ground-truth references to simulate the 16S
samples. Also, the ratio of unknown noised species is set from
0.0 to 0.7 in the 11 samples. Here, the sequencing read length,
sequencing error rate, and coverage depth are set to 100 bp, 0.01,
and 200x, respectively.

To find a moderate threshold value δ, a set of experiments
are carried out by setting various threshold values, to observe
the effect of the values on the ratio of correctly mapped reads
to the unfiltered reads. The experimental results are depicted in

Figure 3. It can be seen that the ratios of correctly aligned reads
are at stable levels when the threshold value is less than 0.5 for all
samples, and the ratios decrease gradually as the threshold value
increases. It should be noted that the ratio value in the first sample
is always at a constant level. This is because this sample is not
polluted by any noise species. To reasonably filter the potentially
mistakenly mapped reads, we choose 0.44 as the mapping score
threshold δ .

Training of the SVM Classifier
In cooperation with Diagnostics Inc., we constructed a
species library of 150 common clinical microorganisms.
These microorganisms include Staphylococcus, Streptococcus,
Pseudomonas aeruginosa, Proteus, Salmonella, and other rare
pathogens. They are distributed in 9 families, 18 classes, 35
orders, 52 families, and 86 species. It is noted that some strains
are at the subspecies level. We extracted the features of simulated
samples to train the SVM classifier (Chauhan et al., 2018), where
the true species are known. Each species in a sample is formatted
by a vector with four elements (Label, Coverage, GapScore,
and HVRScore). Here, the first element “Label” is assigned
with “1” or “0,” representing if the corresponding species exists
or not. We align 11 simulated samples (designed in section
“Simulation Experiments on Filtering Threshold Values”) to
our species library including 150 clinical pathogenic microbes.
We collect 1650 species vectors including 110 positive and
1540 negative vectors, and then randomly divide them into two
groups according to the ratio of 3:1. The first group is a training
dataset, which is used to make 10-fold cross-validation to search
the optimal parameters {C, gamma} of SVM by GridSearch,
and the second group is test dataset, which is used to test the
generalization performance of SVM. As shown in Figure 4, when
the parameter values of C and gamma are set to 0.1 and 0.01,
respectively, the average F1_score gets the best value 0.957 for
the validation dataset. The F1_score could achieve up to 0.917
for the testing dataset. As such, the accuracy of detecting species
in the validation dataset is similar to that in the testing dataset.
Hence, we believe that the proposed method possesses strong
generalization ability and is expected to be a useful tool for the
detection of species in new samples.

Analysis of the Effect of Coverage Depth
on the Performance
Different samples are usually sequenced at different levels
of coverage depths, which might pose an influence on the
performance for detecting species and estimating their relative
abundances. To validate this, we designed experiments to test our
method by changing the sequencing coverage depth. We simulate
15 samples with read length of 100-bp, insertion and deletion rate
of 0.01, at coverage depth ranging from 100 to 800×. As shown
in Figure 5, we could see that the performance of composition
detection increases substantially as sequencing coverage depth
increases, whereas the performance of abundance estimation is
slightly affected by the coverage depth. For example, in the case of
coverage depth 100×, the F1_score of detecting species is around
0.67; when the coverage depth is at 200×, the F1_score is close
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FIGURE 3 | Simulation experiments showing the relationship between the ratio of correctly aligned reads and the value of threshold δ.

FIGURE 4 | Cross-validation with GridSearch about parameters {C, gamma} in SVM. The horizontal axis represents the changing of gamma, the vertical axis the
changing of C, and value in the grid indicates an average F1-score of cross-validation.

to 1.0. This is likely because in the sample with low sequencing
coverage depth, the reads are not sufficient for supporting
feature values that discriminate species references. Alternatively,

the mapping score of each read is not severely influenced by
coverage depth. This is because the score is only related to
the read alignment status rather than coverage depth, and thus
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FIGURE 5 | Effect of sequencing coverage depth on PGMicroD. The horizontal axis is the value of coverage depth, the left vertical axis represents F1-score, and the
right vertical axis is the RRMSE.

FIGURE 6 | Effect of read length on PGMicroD. The horizontal axis is the value of read length, the left vertical axis represents F1-score, and the right vertical axis is
RRMSE.

the filtering of residual reads cannot be affected by coverage
depth. Accordingly, the microbial abundance estimation is not
significantly affected by coverage depth.

Analysis of the Effect of Read Length on
Performance
Read length is one of the most important characters of NGS data;
different read lengths significantly influence the read alignment
process. Generally, the larger the read length is, the more accurate
the alignment is. An accurate alignment will provide a solid
foundation for downstream analysis of the sequencing read data.
Since different sequencing platforms usually produce reads with
distinct scopes of read length, it is necessary to investigate the
effect of the read length on the performance of our proposed
method. To do this, we simulate nine samples with read length
ranging from 80 to 250 bp. Here, the sequencing coverage depth
is set to 500x, and both insertion and deletion error rates are
set to 0.01. The experimental result is depicted in Figure 6,

where the F1_score increases sharply from around 0.67 at read
length of 80 bp to around 0.99 at read length of 100 bp, and
the RRMSE decreases from 0.16 to below 0.06. When the read
length is increasing, the F1_score is roughly at a level of 1.0,
and the RRMSE further decreases to below 0.02. This suggests
two implications. First, high-quality alignment due to long read
lengths can enable high-quality feature values to discriminate
microbial species. Second, our proposed PGMicroD method can
obtain a reasonable performance without the requirement of
extremely long read length. Currently, read length over 100 bp
is easy to achieve with most of the existing sequencing platforms.
Therefore, we conclude that PGMicroD has practical application
value in the analysis of NGS sequencing data.

Analysis of the Effect of Sequencing
Error on the Performance
Sequencing error is another factor closely associated with NGS
technology. Generally, sequencing errors include substitution
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FIGURE 7 | Effect of sequencing error on PGMicroD. The horizontal axis is the value of sequencing error, the left vertical axis represents F1-score, and the right
vertical axis is RRMSE.

error and insertion/deletion error. To investigate the effect
of sequencing errors on the performance of PGMicroD, we
carry out experiments on sequencing datasets with different
sequencing error rates. For this, we simulate 10 samples with
insertion/deletion error rate ranging from 0.001 to 0.01 and an
empirical substitution error rate. Here, the sequencing coverage
depth is 500× and the read length is 100 bp. The experimental
result is depicted in Figure 7; the F1_score remains relatively
constant whereas the RRMSE increases with an increase in
sequencing error rate.

Comparison With Other Methods on
Simulation Experiments
Our proposed method considers the fact that the samples
would have contamination from unknown noised organisms and
human sequencing reads. To test the performance of PGMicroD
against peer methods, we simulate 30 samples with a read length
of 100 bp, coverage depth of 800×, and insertion/deletion error
rate of 0.01. In these samples, we consider the noise reads
originated from non-ground-truth species (other organisms) and
human genomes (simultaneously). We define f 1 as the abundance
of noised reads from non-ground-truth species, f 2 represents
the abundance of noised reads from human genomes, and f 3
represents the abundance of ground truth species. Here, the
summation of the three items, f 1 + f 2 + f 3, equals to 1.

When simulating samples, we set f 2 varying from 0.0 to 0.8
step at 0.2. First, we choose one specific value as f 2, then divide the
value (1-f 2) into f 1 and f 3, which are satisfied for f 1:f 3 = 0.0:1.0,
0.16:0.84, 0.285:0.715, 0.375:0.625, 0.44:0.56, and 0.5:0.5. In
this way, we can obtain 30 simulated samples. We perform
PGMicroD and five other methods and compare their results in
terms of F1_score and RRMSE, including Karp, Harp, Kallisto,
Bwa, and Mothur, as shown in the Supplementary Figures 1–4.
Supplementary Figures 1, 3 show the changes of F1_score and
RRMSE with the changes of f 1, wherein in each subfigure, the

value of f 2 is constant. We note that the performance of all six
methods tends to decrease with f 1 increasing. This is because
non-ground-truth species are very similar to the ground-truth
species, posing influence on read alignment. Supplementary
Figures 2, 4 show the changes of F1_score and RRMSE with the
changes of f 2. In each subfigure of these figures, the ratio between
f 1 and f 3 is constant. We note that the F1_score of most of the six
methods are relatively unchanging when f 2 is increasing, and the
RRMSE values of the Harp and Mothur methods are increasing
while the other four methods tend to decrease. Comparatively,
the influence of noise from human genomes is less than the
influence of noise from non-ground-truth species.

In these comparative experiments, PGMicroD achieves
the highest F1_score in most situations of the simulation
configurations, followed by Karp, Harp, Kallisto, Bwa, and
Mothur. In terms of RRMSE, Kallisto performs the best, followed
by PGMicroD, Bwa, Harp, Karp, and Mothur. We may conclude
that PGMicroD obtained the best trade-off between F1_score and
RRMSE, followed by Harp and then other methods.

Comparison With Peer Methods on Real
Sequencing Samples
Every real sample is composed of more than 120,000 sequencing
reads that are collected from urine, cerebrospinal fluid, or blood
by using the Ion Torrent sequencing platform. The average length
of the reads is around 113 bp, and the sequencing coverage depth
is around 1000x. First, we use the primer pairs to extract HVRs of
each species in the library. Then, we align the real samples (fastq
file) to the species library and compute the mapping score of
every read according to its sequencing quality, mapping gaps, and
status of following to HVRs. We filter the sequencing reads with
a low score, and we calculate three signals (Coverage, GapScore,
and HVRScore) of each species in the library. Next, we feed those
vectors into the SVM classifier to determine which species exist
in the sample. Also, we apply Karp, Harp, Kallisto, Bwa, and
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FIGURE 8 | Performance comparison among the six methods based on real samples based on ODS scores.

Mothur to these samples for microbial composition detection.
The comparative result is depicted in Figure 8. The average ODS
value of PGMicroD, Bwa, Karp, Harp, Kallisto, and Mothur at 25
samples are 2.28, 0.68, 2.16, 1.96, 2.2, and 1.52, respectively. Also,
we plot Venn diagrams to show the overlapped species detected
by the six methods for each sample in Supplementary Figure 5.
From these experiments and comparisons, we conclude that
PGMicroD performs best among the six methods. Our proposed
method is very suitable for the analysis of samples where read
length is more than 100 bp, coverage depth is more than 200x,
and the sequencing error rate is lower than 0.01.

DISCUSSION AND CONCLUSION

In the above experiments, we note that the noised unknown
species exert a negative influence on composition detection. This
is because noised species are very similar to the ground truth
species; in such a situation, the reads coming from the noised
species are aligned well to the reference database. Also, the reads
from noised species will increase the estimated abundance of
the ground truth species. However, this negative effect can be
minimized by implementing a mapping score filter, which can
remove most of the reads originating from unrelated species.
As for noised human sequencing reads, their influence is less
than the influence of noised species on composition detection
and abundance estimation. This is because the sequences of
human genomes are rather different from the focal species.
Harp displays the best performance on composition detection in
samples without noised unknown species and human sequencing
reads, but the deviation of the abundance estimation is not highly
significant. This is because Harp assumes that all reads in the
samples originated from species present in the reference database.
The operating time of Mothur is longest among the methods, and
it occupies a large amount of memory while running because
the distance between any two reads is computed and then
utilized as an OTU cluster analysis. The false-positive rate of
compositions detected by BWA is high, meanwhile, and it cannot
judge whether the species with low abundance exist in the sample
or not. We found the same pattern for Kallisto. Karp provides

an impressive abundance estimation result via re-estimating the
abundance of species detected by Kallisto, but the performance
of composition detection is not as significant as PGMicroD. In a
series of samples with different noised species, the performance
of PGMicroD is higher compared to the other methods, due to
the HVRs and spatial distribution characteristics. However, the
efficiency of PGMicroD is second to Karp because of the time
to calculate the mapping score of all the reads. On the whole,
among the six methods, our proposed method performs better
than the other five.

A key to microbial research is to detect composition and
estimate abundance with high performance. In this paper, we
propose a new algorithm, PGMicroD, for the detection of
pathogenic microbial composition using NGS data. It can be
easily executed via a command line described in the software
package.1 The most important feature of PGMicroD is that it
extracts multiple features to train a classifier to predict species
and performs a second-round alignment to estimate abundances.
Generally, each of the selected features (Coverage, GapScore,
and HVRScore) may have its own marginal effect and may
have different effects on the microbial composition prediction.
According to our observation on experiments, GapScore poses
larger effect on the detection of the microbial composition
than the other two features. We test PGMicroD based on both
simulation and real datasets, indicating the PGMicroD exhibits
superior performance. In future work, we intend to integrate
mutations such as single nucleotide variations (Yuan et al., 2020)
and copy number variations (Xi et al., 2019; Zhao et al., 2020)
to improve the detection of microbial composition. We also
plan to establish a more comprehensive reference library for
detecting species and improving detection accuracy and create
new methods aiming at the filtered reads to identify new species.
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