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Introduction: The development of the Internet has made life much more

convenient, but forms of network intrusion have become increasingly diversified

and the threats to network security are becoming much more serious. Therefore,

research into intrusion detection has become very important for network security.

Methods: In this paper, a clustering algorithm based on the symbiotic-organism

search (SOS) algorithm and a Kohonen neural network is proposed.

Results: The clustering accuracy of the Kohonen neural network is improved by

using the SOS algorithm to optimize the weights in the Kohonen neural network.

Discussion: Our approach was verified with the KDDCUP99 network intrusion

data. The experimental results show that SOS-Kohonen can effectively detect

intrusion. The detection rate was higher, and the false alarm rate was lower.

KEYWORDS

intrusion detection, symbiotic-organism search algorithm, Kohonen neural network,
detection rate, false alarm rate

1. Introduction

With the rapid spread of the Internet, there has also been a rapid development of online
systems for shopping, banking, making payments, stock trading, and so on. However, due
to the openness of the network, forms of network intrusion are becoming increasingly
diversified, so that networks and systems are experiencing ever more serious threats.
Therefore, detecting network intrusion has become a critical issue in network security.
In recent years, increasing attention has been paid by scholars all over the world to
intrusion detection. The aim is to identify any behavior that could compromise the integrity,
confidentiality, or availability of the system. It can be defined as identifying the people
accessing a computer system (Shitharth and Winston, 2017). Current methods of network
intrusion detection can be divided into two categories: misuse intrusion detection and
abnormal intrusion detection. The capability of misuse intrusion detection mainly depends
on the completeness of the detection knowledge base. Its shortcoming is that it cannot
find unknown forms of intrusion. Abnormal intrusion detection is based on identifying a
difference between the detected and acceptable behavior.
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Due to their continuous development, various swarm
intelligence algorithms have been applied to intrusion detection,
such as the genetic algorithm (Mabu et al., 2011), immune
algorithm (Zhang et al., 2014), ant colony optimization (Feng
et al., 2014), and so on. However, as the “no free lunch” theorem
(Wolpert and Macready, 1997) argues, none of these group
intelligence algorithms is suitable for detecting all forms of
intrusion. Thus, finding a better algorithm is still a hot topic for
scholars in various countries.

In recent years, various meta-heuristic algorithms have been
proposed, such as the crow search algorithm (Askarzadeh, 2016;
Hussien et al., 2021), monarch butterfly optimization (Wang
et al., 2019), lightning search algorithm (Shareef et al., 2015;
Abualigah et al., 2021), water evaporation optimization (Kaveh
and Bakhshpoori, 2016), Kohonen neural network (Wehrens and
Buydens, 2007; De Almeida et al., 2013), symbiotic-organism search
(SOS) algorithm (Cheng and Prayogo, 2014; Ezugwua and Prayogo,
2019; Chakraborty et al., 2022), bat algorithm (BA) (Xinshe, 2010;
Shehab et al., 2022), cuckoo algorithm (CS) (Yang and Deb,
2009), flower pollination algorithm (FPA) (Yang, 2012; Fouad and
Gao, 2019), grey wolf optimizer (GWO) (Mirjalili et al., 2014),
particle swarm algorithm (PSO) (Kennedy and Eberhart, 1995;
Jordehi and Jasni, 2015), Harris hawk optimization(Hussien et al.,
2022), Quantum-inspired deep neural networks (Shi et al., 2021),
Gaining–sharing knowledge based algorithm (Mohamed et al.,
2020) and so on.

This paper proposes a clustering algorithm based on the SOS
algorithm and a Kohonen neural network. The clustering accuracy
of Kohonen neural network was improved by using the SOS
algorithm to optimize the weights of the Kohonen neural network.
SOS-Kohonen was tested with the KDDCUP99 network intrusion
data. The experimental results show that it can effectively detect
intrusion detection. Compared to other standard methods, the
detection rate was higher and the false alarm rate was lower.

The remainder of the paper is organized as follows. Section
2 describes the structure of a Kohonen neural network. Section
3 introduces a basic SOS algorithm. Section 4 considers the use
of the SOS-Kohonen algorithm for intrusion detection. Section
5 describes the data preprocessing method. The simulation
experiments and results are presented in Sections 6, 7 concludes
and discusses future work.

2. Kohonen neural network

Finnish professor Teuvo Kohonen proposed an unsupervised
self-organizing competitive neural network called a Kohonen
neural network. It can achieve automatic clustering by using
a self-organizing feature mapping to adjust network weights.
A Kohonen neural network (De Almeida et al., 2013) consists of
two feedforward layers, namely an input layer and an output layer.
The input layer is mapped into a two-dimensional response mesh
in the output layer based on weights. The topology of a Kohonen
neural network is shown in Figure 1.

In a Kohonen neural network, the Euclidean distance of
each neuron is obtained by calculating the input eigenvector for

the corresponding output layer. The neuron with the smallest
Euclidean distance is the superior neuron, and its connection
weights are adjusted to make it closer to the original input vector.
The area adjacent to the winning neuron is also adjusted by the
connection weight to make it closer to the input vector.

In the training phase, each input vector Xs is input into the
network, and only those winning neurons closest to the current
weight vector of the input receive a corresponding stimulus. The
pattern vector Xs is calculated as the minimum Euclidean distance
from the selected winning neurons:

neuron c← min
j

{∑
i

(xsi − wji)
2

}
, j = 1, 2, . . . , N × N (1)

where c represents the winning neuron and xsi represents the ith
coordinate of the input vector. In addition, the level of the ith
weight of neuron j is denoted by wji. The number of neurons in
a Kohonen level is denoted by N × N. Once the winning neuron is
selected, the corresponding weight wji of each neuron j in the layer
is updated according to the difference between the original weight
and the input neuron, as follows:

1wji = η

(
1−

dr

dmax + 1

)
(xsi − wold

ji ), dr = 0, 1, . . . , dmax

(2)
where the learning rate is η, the weight of the previous generation
of wji is wold

ji , and the number of neurons between neuron j and the
superior neuron is represented by the topological distance dr . The
size of the adjacent area dmax decreases from the coverage of the
entire network to the winning neurons as training progresses. In
addition, the learning rate η changes during training:

η = (ηstart
− ηfinal)

(
1−

nepoch

ntot

)
+ ηfinal (3)

where ntot represents the total number of iterations; nepoch
represents the current iteration times.

3. SOS algorithm

In nature, some organisms establish symbiotic relationship,
which strengthens their ability to adapt to the environment, thereby
enhancing their viability. The SOS algorithm (Cheng and Prayogo,
2014) simulates the symbiotic relationships found in nature. Each
organism in the ecosystem passes through three phases in the
SOS algorithm: mutualism, commensalism, and parasitism. In each
phase, the organism is assumed to be in a symbiotic relationship
with another random organism. The interactions between the pairs
of organisms are used to adjust the fitness value. The result is an
optimal solution to the problem. The process is described in the
following sections.

3.1. Mutualist phase

In nature, the symbiosis between bees and flowers provides a
mutual benefit, as both organisms can benefit. The formulae for
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FIGURE 1

Structure of a Kohonen neural network.

updating organisms in mutually beneficial symbiosis are as follows:

Xinew = Xi + rand(0, 1)× (Xbest −Mutual_Vector × BF1) (4)

Xjnew = Xj + rand(0, 1)× (Xbest −Mutual_Vector × BF2) (5)

Mutual_Vector =
Xi + Xj

2
(6)

where Xi and Xj represent two of the organisms in the ecosystem.
Xbest represent the best organism; Mutual_Vector represents the
relationship between two organisms. The benefit factors are BF1
and BF2, which have a value of 0 or 1. The unequal benefits obtained
by the two parties from the symbiotic relationship are controlled by
the benefit factors.

3.2. Commensal phase

An example of commensalism in nature is that between a
remora and a shark. The remora benefits while the shark is neither
harmed nor benefits. This symbiotic relationship is called partiality.
The formula for the commensalism phase is

Xinew = Xi + rand(−1, 1)× (Xbest − Xj) (7)

where Xi is the party that makes a unilateral gain and Xj is the party
that is not harmed.

3.3. Parasitic phase

In nature, parasitism occurs between mosquitoes and humans.
The mosquitoes benefit, whereas the humans are hurt. In
this stage, some of the dimensions of Xi are randomly
selected and replaced by random values within the search
space to form the artificial parasiteParasite_Vector. In the

population randomly selected, we compare the fitness of an
individualXj(j 6= i) with Parasite_Vector, and keep the optimal
organism as the new Xj .

4. Proposed SOS-Kohonen
algorithm for intrusion detection

The SOS algorithm is based on the natural phenomenon of
symbiosis between various organisms. When a virus intrudes into
a system, the relation between the system and the virus can be
viewed as a symbiotic relationship between the virus data and
the system data.

The initial weights of the Kohonen neural network are
optimized with the SOS algorithm. The optimized Kohonen neural
network can reduce the length of the error vector between the
training sample and the weight vector. This process helps to avoid
rigidity during training, which can improve the clustering ability
of the Kohonen neural network. After SOS training, the Kohonen
neural network identifies subclasses with similar input patterns.
Each subclass is used to train a specific radial basis network,
which results in a local adjustment of the weights of the radial
basis network. This can reduce the training burden of the radial
basis network and improve the classification of the sample. For a
Kohonen neural network trained by a sample data set, only one
neuron in the competing layer is activated. A radial basis network
corresponding to the activated winning neurons is used as input.
Currently, the only neuron in the output layer is the transient
stability index.

The steps in SOS-Kohonen intrusion detection are as follows:
Step 1. Initialize the training data set, the number of symbiotic

species, and the number of iterations.
Step 2. The initial weights w are adjusted according to the

Euclidean distance between the sample vector and the initial weight
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TABLE 1 Number of samples for each attack type.

Attack type Number of samples

1 1,399

2 1,862

3 115

4 580

5 44

in the mutualist phase, commensal phase, and parasitic phase of
the SOS algorithm.

Step 3. The Kohonen neural network is trained according to the
initial weight w optimized by the SOS algorithm.

Step 4. The distance between the competing layer neuron j and
the input vector X is calculated:

dj =

∣∣∣∣∣
m∑

i=1

(xi − wij)
2

∣∣∣∣∣ , j = 1, 2, . . . , n. (8)

Step 5. If the minimum distance has been reached, the
competing layer neuron X, which matches the sample vector C, is
the output neuron of the optimal matching.

Step 6. Adjust the node weight coefficients in node c and
neighborhood vector x:

Nc(t) = {t|find(norm(post, posc) < r}, j = 1, 2, . . . , n.

wij = wij + η(Xi − wij) (9)

The positions of neurons c and t are denoted by posc and post ,
respectively. The distance between the two neurons is calculated
in terms of norm(). η and r represent the learning rate and the
neighborhood radius, respectively. They decrease linearly as the
number of iterations increases.

Step 7. If the stopping condition is met stop, otherwise
return to step 3.

Step 8. Read another test data set.
Step 9. Cluster the input test data set according to the trained

weight W.
Step 10. Output the classification result.
Pseudocode corresponding to the steps of SOS-Kohonen

intrusion detection is given in Algorithm 1.

Initialize: Populate n organisms in the

ecosystem with random values

Input: Training data set

Calculate the initial weights w by

summing the points and output nodes of

the Kohonen neural network

Calculate the fitness of each organism

Identify the best organism (Xbest) in the

initial population

Define a stopping criterion (either a

fixed number of generations/iterations or

accuracy)

while (t < MaxGeneration)
for i = 1 to n

Mutualist phase

Choose organism j randomly other

than organism i

Determine the beneficial factor and

mutual vector via Eqs. (6)

Modify organisms Xi and Xj based on

their mutual relationship via Eqs. (4)

and (5)

Calculate new weights

Evaluate the fitness of the new

solution

Accept the new solution if the

fitness is better

End of mutualist phase

Commensal phase

Choose organism j randomly other

than organism i

Modify organism Xi with the assist

of organism Xj via Eq. (7)

Calculate new weights

Evaluate the fitness of the new

solution

Accept the new solution if the

fitness is better

End of commensal phase

Parasitic phase

Choose organism j randomly other

than organism i

Create a parasite (Parasite_Vector)

from organism Xi

Calculate the fitness of the new

organism

Kill organism j and replace it with

the parasite if its fitness is lower than

the parasite’s fitness

Calculate new weights

Evaluate the fitness of the new

solution

Accept the new solution if the

fitness is better

End of parasitism phase

Update the best organism

end for

t = t + 1

end while

Calculate the weight of the network

according to the individual training

weights w

Read another test data set

Cluster the input test data set based on

the trained weights

Output: Classification result

Algorithm 1. SOS-Kohonen neural network for virus intrusion detection.
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FIGURE 2

Percentages of each attack type for (A) training data set. (B) Four randomly selected cases.

TABLE 2 Statistics for results for the four cases for each algorithm.

Case Result Method

BA-Kohonen CS-Kohonen FPA-Kohonen GWO-Kohonen PSO-Kohonen SOS-Kohonen

1 Best 0.033333 0.06 0.051111 0.04 0.046667 0.033333

Worst 0.537778 0.191111 0.2 0.602222 0.206667 0.064444

Mean 0.270444 0.100889 0.14 0.152667 0.117778 0.048889

Std 0.177392 0.050231 0.065822 0.172365 0.072153 0.008446

2 Best 0.033333 0.017647 0.019608 0.014379 0.01634 0.010458

Worst 0.219608 0.061438 0.066013 0.799346 0.066013 0.019608

Mean 0.153529 0.03085 0.045425 0.113725 0.038431 0.015229

Std 0.071594 0.017234 0.021783 0.242131 0.022362 0.003173

3 Best 0.011494 0.008812 0.010345 0.008812 0.008429 0.006897

Worst 0.401149 0.033333 0.038697 0.608046 0.038697 0.011494

Mean 0.242261 0.012912 0.02908 0.08636 0.028467 0.009464

Std 0.182699 0.007303 0.012269 0.18368 0.012612 0.001666

4 Best 0.026608 0.007895 0.008772 0.004386 0.006433 0.005556

Worst 0.48655 0.029532 0.029532 0.484795 0.029532 0.008772

Mean 0.161374 0.015 0.024415 0.057018 0.015058 0.007661

Std 0.214127 0.009504 0.008512 0.150482 0.009798 0.001101
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TABLE 3 Comparison of detection rates for the six algorithms.

Case Attack type Detection rate

1 2 3 4 5 BA CS FPA GWO PSO SOS

1 149 208 14 71 8 97.84% 97.78% 97.62% 97.73% 96.36% 98.53%

2 1094 235 95 78 28 99.07% 99.29% 99.04% 98.93% 99% 99.54%

3 1263 914 17 108 308 87.57% 99.08% 99.56% 99.43% 99.61% 99.73%

4 1146 1556 212 81 425 99.63% 99.66% 99.63% 99.74% 99.69% 99.78%

Average detection rate 96.03% 98.95% 98.96% 98.96% 98.66% 99.4%

FIGURE 3

(Continued)
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The detection processes of BA-Kohonen, CS-Kohonen,
FPA-Kohonen, GWO-Kohonen, and PSO-Kohonen can be
imitated by SOS-Kohonen.

5. Data preprocessing

In intrusion detection, the network data to be assessed have
multiple attributes with inconsistent units of measurement. If such
data are used directly for intrusion detection, the accuracy and

speed will be reduced. Therefore, the input data are pretreated, that
is, normalized. The specific preprocessing method is as follows:

(1) The data are standardized so that the mean of each attribute
is 0 and the variance is 1. The attributes of the initial network data
are denoted by xij, and xj and Sj represent the mean and variance
of the jth dimension, respectively. The attributes are standardized
as follows:

xj =
1
n

n∑
i=1

xij (10)

FIGURE 3

(Continued)
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FIGURE 3

Cases 1- 4 expected classification results are (C,G,K,O); actual classification results are (D,H,L,P); fitness evolution curves are (E,I,M,R); ANOVA test
of optimal paths are (F,J,N,S); respectively.

Sj =

√√√√ 1
n− 1

n∑
i=1

(xij − xj)2 (11)

The normalized formula for (10) is as follows:

x′ij =
xij − xj

Sj
, i = 1, 2, . . . , n, j = 1, 2, . . . , m (12)

(2) Normalize formula (10) to the range [0, 1] is as follows:

x′ij =
xij −min(xij)

max(xij)−min(xij)
, i = 1, 2, . . . , n, j = 1, 2, . . . , m

(13)

6. Simulation experiments and
analysis of results

To verify the effectiveness of SOS-Kohonen in detecting
network intrusion by a virus, we ran two sets of tests with

the proposed algorithm. The first verified the accuracy of SOS-
Kohonen in classifying five types of virus. The second verified
the ability of SOS-Kohonen to detect viruses hidden in normal
data. The results for SOS-Kohonen were compared with results for
Kohonen neural networks combined with one of five commonly
used swarm intelligence algorithms: BA, CS, FPA, GWO, and
PSO. The relevant parameters for these algorithms were set as
follows:

BA: As in Ref. (Xinshe, 2010), r0
= 0.5, A = 0.5, α = 0.95, γ =

0.05.
CS: As in Ref.(Yang and Deb, 2009), β = 1.5,

ρ0 = 1.5.
FPA: As in Ref. (Yang, 2012),ρ = 0.8.
GWO: As recommended in Ref. (Mirjalili et al., 2014), −→α = 0

to 2.
PSO: Weight factor ω = 0.6, c1 = c2 = 2(Kennedy and

Eberhart, 1995), and population size is 15.
SOS: As in Ref. (Cheng and Prayogo, 2014), population size

is 15.
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FIGURE 4

Percentage of each attack type in the training data set.

6.1. Experimental setup

The development environment for this test was MATLAB
R2012a. The tests were run on an AMD Athlont (tm) II∗4640
processor with 4 GB of memory.

6.2. Simulation of virus classification by
SOS-Kohonen

In this section, we tested the accuracy of SOS-Kohonen in virus
classification. The standard network intrusion test data set contains
five categories of virus data. We extracted 4000 training samples,
as shown in Table 1 and Figure 2A. Each sample contained a 38-
dimensional feature that is used to represent the different attributes
of the network intrusion data. Attack type 5 had the fewest training
samples and type 2 had the most.

TABLE 4 Number of samples for each test case for each attack type.

Case Attack type

Normal DOS U2L U2R Probe

1 308 78 178 3 33

2 1007 290 636 10 157

3 1558 409 913 15 225

4 2078 529 1024 21 308

Four subsets were randomly selected from the virus intrusion
detection data set as test cases. The percentages for the five attack
types in the four cases varied (Figure 2B). The number of samples
in each case was different, as shown in Table 3.

For each case, we conducted 10 independent tests using each
of the six group intelligence algorithms to determine the weights
for the Kohonen neural network. It can be seen that the SOS-
Kohonen algorithm has a preference better than BA-Kohonen,
CS-Kohonen, FPA-Kohonen, GWO-Kohonen, or PSO-Kohonen,
both in terms of optimal value and variance for the accuracy. It also
had stronger robustness.

Figures 3C, G, K, O show the expected classification results
for cases 1 to 4. Figures 3D, H, L, P show the actual results
for these cases for SOS-Kohonen. Due to space constraints, we
show the results only for the highest detection rate from the 10
independent runs. The detection rate is defined in Section “6.3.
Simulation of virus detection by SOS-Kohonen.” The red circles
indicate differences between the actual detection and the expected
detection. Figures 3D, L, P have only one error, whereas Figure 3H
has five.

Table 3 lists the detection rates for the six algorithms for the
four cases. SOS-Kohonen had higher detection rates than the BA-
Kohonen, CS-Kohonen, FPA-Kohonen, GWO-Kohonen, or PSO-
Kohonen algorithms. It achieved an average detection rate of 99.4%
in classifying intrusion data.

FIGURE 5

Specific proportions of the test data.
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Figures 3E, I, M, R illustrate the convergence of the six
algorithms. It can be seen that SOS converged fastest and with
the highest accuracy. Figures 3F, J, N, S are variance maps for
each algorithm. The SOS algorithm had the strongest stability and
highest robustness compared to the other algorithms.

6.3. Simulation of virus detection by
SOS-Kohonen

This section uses the internationally accepted KDDCUP99
(KDD Cup 1999 Data, 1999; MIT Lincoln Laboratory, 2009;
Aggarwal and Sharma, 2015) data set to verify the detection
performance of SOS-Kohonen. The KDDCUP99 data set was
established by the Lincoln Laboratory of the Massachusetts
Institute of Technology. The data set was collected using tcpdump
from a simulated network environment over 9 weeks. This
database has become a benchmark for network intrusion detection
and can be used in comprehensive tests of the performance of
intrusion detection algorithms. Attacks in the data set include
denial of service attacks (DOS), scan attacks (probe), remote
user unauthorized access attacks (U2L), and unauthorized use
of local super-privilege access attacks (U2R). We apply the
internationally accepted detection rate and false alarm rate as
evaluation indicators, which are defined as follows (Ganapathy
et al., 2012; Lin et al., 2015):

Detection rate =
Number of attack samples found

Total number of attacks
× 100%

(14)

False alarm rate =

Number of correct samples
that were misjudged

Total number of correct samples
× 100%

(15)

We randomly selected 6,000 samples as training data, including
normal data and the four kinds of intrusion data. The percentages
of these five types of data are given in Figure 4. Among them,
normal samples were the most common and U2R samples the
least common. We then randomly selected four subsets from
the KDDCUP99 data set as test cases. The number of each
attack type for each case are plotted in Figure 5 and listed in
Table 4.

In this paper, 10 independent experiments were carried out
for each algorithm for the four cases. As can be seen from
Table 5, for cases 1, 2, and 3, the SOS-Kohonen algorithm
has higher search accuracy than the other algorithms. In case
4, although the optimal value for SOS is slightly worse than
that for GWO, the average of the 10 runs was still better than
that of the other five algorithms. This shows that the SOS-
Kohonen algorithm has a strong search ability and robustness as
a whole.

Figures 6C1, G1, K1, O1 show the expected test results for
cases 1 to 4, and Figures 6D1, H1, L1, P1 show the actual test
results for SOS-Kohonen. Due to space constraints, we show the
results only for the highest detection rate from the 10 independent
runs. The normal data are represented as blue dots, and the other
colors represent the four types of intrusion data. The red circles
indicate differences between the actual detection and the expected
detection.

Table 6 shows the average detection rates and average false
alarm rates for the six algorithms for the four cases. It can be
seen that SOS-Kohonen had a higher detection rate and lower
false alarm rate than BA-Kohonen, CS-Kohonen, FPA-Kohonen,
GWO-Kohonen, or PSO-Kohonen. The average detection rate of
SOS-Kohonen was 94.51%.

Figures 6E1, I1, M1, R1 show the convergence of the
six algorithms. The convergence speed and accuracy of SOS-
Kohonen were better than those of the other algorithms.

TABLE 5 Statistics for accuracy for the four cases for each algorithm.

Case Result Method

BA-Kohonen CS-Kohonen FPA-Kohonen GWO-Kohonen PSO-Kohonen SOS-Kohonen

1 Best 0.106667 0.2 0.198333 0.095 0.151667 0.09

Worst 0.488333 0.331667 0.375 0.361667 0.365 0.236667

Mean 0.3475 0.282833 0.2965 0.201667 0.284 0.156333

Std 0.11302 0.037392 0.056675 0.102524 0.071868 0.065106

2 Best 0.258095 0.239048 0.273333 0.161429 0.142857 0.082857

Worst 0.560476 0.36381 0.397619 0.690952 0.394762 0.252857

Mean 0.391762 0.306048 0.319762 0.329905 0.274238 0.166524

Std 0.085917 0.046231 0.034559 0.177668 0.081504 0.054313

3 Best 0.251923 0.107692 0.298397 0.150321 0.185897 0.11859

Worst 0.482372 0.379487 0.384295 0.365705 0.380128 0.294231

Mean 0.361699 0.273526 0.356571 0.257981 0.320897 0.187404

Std 0.082383 0.081583 0.025715 0.085018 0.065687 0.052848

4 Best
Worst
Mean

Std

0.253382
0.497826
0.389348
0.091809

0.173913
0.339855
0.27657

0.050181

0.251691
0.394444
0.319324
0.049568

0.089372
0.378986
0.232729
0.106131

0.189614
0.419082
0.326715
0.067197

0.104106
0.301449

0.2143
0.059002
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Figures 6F1, J1, N1, S1 show the variance of each algorithm.
For each case, the SOS-Kohonen algorithm had the second best
variance ranked second but the highest search accuracy. Overall,
the SOS-Kohonen algorithm performed better than the other
algorithms.

6.4. p-values from the Wilcoxon
rank-sum test

Next, we ran the Wilcoxon rank-sum test (Derrac et al.,
2011; Gibbons and Chakraborti, 2011; Hollander et al., 2013) for

FIGURE 6

(Continued)
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FIGURE 6

Cases 1–4 expected classification results are (C1,G1,K1,O1); actual classification results are (D1,H1,L1,P1); fitness evolution curves are (E1,I1,M1,R1);
ANOVA test of optimal paths are (F1,J1,N1,S1); respectively.

TABLE 6 Comparison of average detection rate and average false alarm rate for the six algorithms.

Case Result Method

BA CS FPA GWO PSO SOS

1 Detection rate 85.24% 89.69% 90.75% 88.56% 90.55% 95.45%

False alarm rate 10.33% 7.98% 7.25% 7.97% 7.47% 5.20%

2 Detection rate 84.38% 90.65% 87.58% 87.56% 84.76% 96.26%

False alarm rate 12.34% 7.94% 9.91% 8.76% 11.25% 4.67%

3 Detection rate 91.59% 90.13% 83.69% 89.28% 80.54% 94.90%

False alarm rate 8.11% 7.47% 10.82% 8.32% 12.17% 5.44%

4 Detection rate 85.42% 86.14% 80.45% 84.19% 90.39% 91.43%

False alarm rate 9.43% 10.50% 11.77% 11.69% 7.07% 6.79%

Average detection rate 86.66% 89.16% 85.62% 87.40% 86.56% 94.51%
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TABLE 7 p-values from the Wilcoxon rank-sum test for the four
classification cases.

Algorithm Case 1 Case 2 Case 3 Case 4

SOS vs. BA 0.0079 1.7462× 10−4 2.3697× 10−4 1.6589× 10−4

SOS vs. CS 4.7751× 10−4 0.0021 0.0608 0.0051

SOS vs. FPA 4.8226× 10−4 3.8732× 10−4 7.2031× 10−4 2.5197× 10−4

SOS vs. GWO 0.0404 0.0441 0.0012 0.9696

SOS vs. PSO 0.0062 0.0013 0.0023 0.1267

TABLE 8 p-values from the Wilcoxon rank-sum test for the four
detection cases.

Algorithm Case 1 Case 2 Case 3 Case 4

SOS vs. BA 0.0022 1.8165× 10−4 4.3745× 10−4 7.6502× 10−4

SOS vs. CS 4.3964× 10−4 3.2643× 10−4 0.0172 0.0312

SOS vs. FPA 5.8006× 10−4 1.8063× 10−4 1.8165× 10−4 0.0017

SOS vs. GWO 0.5452 0.0058 0.0639 0.6232

SOS vs. PSO 0.0028 0.0073 0.0010 0.0036

SOS-Kohonen and the other five algorithms. We chose p = 0.05 as
the level of significance. Table 7 shows the p-values for the four
classification cases described in Section “6.2. Simulation of virus
classification by SOS-Kohonen.” Table 8 shows the p-values for the
four detection cases described in Section “6.3. Simulation of virus
detection by SOS-Kohonen”

In Table 7, for case 3, the p-value for SOS vs CS is greater than
0.05. For case 4, the p-values for SOS vs GWO and SOS vs PSO are
greater than 0.05. All other p-values are less than 0.05. In Table 8,
the only p-values greater than 0.05 are for SOS vs GWO for cases
1, 3, and 4. Thus, for most of the eight tests cases, the differences
between SOS and the other algorithms were statistically significant
and not due to chance.

6.5. Analysis of results

In this paper, six common swarm intelligence algorithms were
combined with Kohonen neural network and used to simulate
the intrusion detection of network viruses. We ran two sets of
tests. In Section “6.2. Simulation of virus classification by SOS-
Kohonen,” we tested the classification accuracy of the algorithms.
Figures 3C—S show the classification results, convergence, and
variance maps for the four test cases. Table 2 lists the classification
accuracy of the six swarm intelligence algorithms.

In Section “6.3. Simulation of virus detection by SOS-
Kohonen,” we assessed the detection rate and false alarm rate for
normal data and four attack types. Figures 6C1—S1 show the
classification results, convergence, and variance maps for the four
test cases. Table 6 compares the average detection rates and false
alarm rates for the six algorithms.

In Section “6.4. p-values from the Wilcoxon rank-sum test,”
we ran the Wilcoxon rank-sum test. For most of the eight tests
cases, the differences between SOS and the other algorithms were
statistically significant and not due to chance. Thus, the SOS-
Kohonen algorithm is more effective than the other five swarm
intelligence algorithms in detecting network intrusion by a virus.

7. Conclusions and future work

With the continuous development and popularization
of the Internet, there is much more convenient access to
network resources. However, this has led to a continuous
increase in security problems due to virus intrusion. In this
paper, we combined a swarm intelligence algorithm with a
neural network to detect network intrusion by a virus. Our
approach is described in detail, and it was tested with the
international KDDCUP99 intrusion data set, which verified its
effectiveness. Moreover, this is also a new method for detecting
network intrusion by a virus. With the rapid development
of cloud computing and big data, our future work will
consider the application of SOS- Kohonen to heterogeneous
distributed systems.
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