
Frontiers in Aging Neuroscience 01 frontiersin.org

TYPE Original Research
PUBLISHED 07 February 2023
DOI 10.3389/fnagi.2023.1122712

Effects of levodopa on gut bacterial 
antibiotic resistance in Parkinson’s 
disease rat
Shuo Sheng 1, Xianwei Li 1, Shuo Zhao 2, Changqing Zheng 1 and 
Feng Zhang 1,3,4*
1 Key Laboratory of Basic Pharmacology of the Ministry of Education, Joint International Research 
Laboratory of Ethnomedicine of the Ministry of Education and Key Laboratory of Basic Pharmacology of 
Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China, 2 Electron Microscopy Room of School 
of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China, 3 Laboratory Animal Center, Zunyi 
Medical University, Zunyi, Guizhou, China, 4 The Collaborative Innovation Center of Tissue Damage Repair 
and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China

The second most prevalent neurodegenerative ailment, Parkinson’s disease (PD), is 
characterized by both motor and non-motor symptoms. Levodopa is the backbone 
of treatment for PD at the moment. However, levodopa-induced side effects, such 
as dyskinesia, are commonly seen in PD patients. Recently, several antibiotics were 
found to present neuroprotective properties against neurodegenerative and neuro-
inflammatory processes, which might be  developed to effective therapies against 
PD. In this study, we aimed to identify if levodopa treatment could influence the gut 
bacterial antibiotic resistance in PD rat. Fecal samples were collected from healthy rats 
and 6-OHDA induced PD rats treated with different doses of levodopa, metagenomic 
sequencing data showed that levodopa resulted in gut bacteria composition change, 
the biomarkers of gut bacteria analyzed by LEfSe changed as well. More interestingly, 
compared with levodopa (5 mg/kg)-treated or no levodopa-treated PD rats, levodopa 
(10 mg/kg) caused a significant decrease in the abundance of tetW and vanTG genes 
in intestinal bacteria, which were related to tetracycline and vancomycin resistance, 
while the abundance of AAC6-lb-Suzhou gene increased apparently, which was 
related to aminoglycosides resistance, even though the total quantity of Antibiotic 
Resistance Gene (ARG) and Antibiotic Resistance Ontology (ARO) among all groups 
did not significantly differ. Consequently, our results imply that the combination of 
levodopa and antibiotics, such as tetracycline and vancomycin, in the treatment of 
PD may decrease the amount of corresponding antibiotic resistance genes in gut 
bacteria, which would give a theoretical basis for treating PD with levodopa combined 
with tetracycline and vancomycin in the future.
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Introduction

Parkinson’s disease (PD) is a degenerative neurologic illness that worsens over time. This disease 
is predicted to increase in prevalence as the aging of the population. As a result of the clinical 
presentation, which includes both motor and non-motor symptoms such bradykinesia, rest tremor, 
rigidity, and hunched posture, the movement condition progresses and significantly lowers quality of 
life (Hayes, 2019). According to histopathology, Parkinson’s disease (PD) is characterized by the 
buildup of neuronal Lewy bodies and the specific death of dopamine (DA) neurons in the substantia 
nigra pars compacta (SNpc) (Lotankar et al., 2017). DA neuronal loss might result from apoptosis and 
autophagy (Anglade et al., 1997). The presynaptic protein α-synuclein, which is neuropathologically 
and genetically connected to Parkinson’s disease (PD), α-synuclein aggregation is a sequential process 
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that results in the accumulation of inert fibrils and oligomeric species 
inside of neurons, the SNpc dopaminergic neurons appear to be especially 
susceptible to the effects of α-synuclein aggregates (Song et al., 2015; 
Sampson et al., 2016; Miki et al., 2017). However, the primary cause of PD 
remains unclear.

For its impact on disability and cost-effectiveness, levodopa taken 
orally is without a doubt the “gold standard” of PD therapies. Levodopa 
medication has been shown to improve Parkinson’s symptoms in patients, 
most likely due to the striatum’s conversion of DA precursor to DA 
(LeWitt, 2015). Nonetheless, as the disease progresses and disease 
duration increases, symptoms associated with PD do not respond well to 
levodopa treatment, or appear to be resistant to levodopa (Vorovenci et al., 
2016). This so-called levodopa resistance could make clinicians and 
researchers confused, as patients often have levodopa-responsive dystonia 
accompanied by levodopa-resistant symptoms and signs (Nonnekes et al., 
2016). For PD patients who cannot be controlled by drugs alone, surgical 
methods, such as unilateral pallidotomy and deep brain stimulation, have 
positive outcomes (Radhakrishnan and Goyal, 2018).

A potentially ground-breaking method for treating Parkinson’s 
disease has evolved that uses antibiotics to their advantage. Numerous 
experimental and pre-clinical studies have shown that antibiotics may 
be used as neuroprotective drugs. Additionally, evidence suggests that 
antibiotics are helpful in reducing neuro-inflammation and 
mitochondrial dysfunction in addition to avoiding the production of 
α-synuclein (Yadav et al., 2021). In PD animal models, tetracyclines 
conferred DA neuroprotection via its anti-inflammatory, anti-oxidant 
and anti-apoptotic activities, doxycycline can reduce the production of 
mitochondrial-derived reactive oxygen species and prevent the 
aggregation and seeding of recombinant α-synuclein, rats exposed to 
rotenone-induced motor deficits can be  improved by minocycline, 
which increased TH expression and inhibited the release of ROS and 
NO in the SN (Sun et  al., 2019; Dominguez-Meijide et  al., 2021; 
Rahmani et al., 2022). Recently, another MPTP-induced PD mice model 
study showed that, in pole and traction tests, mice with motor 
dysfunction significantly improved after receiving vancomycin as a 
pretreatment, which could inhibit the metabolism of DA, and 
vancomycin pretreatment also can alleviate neuroinflammation and 
decrease the expression of TLR4/MyD88/NF-κB/TNF-α signaling 
pathway in both brain and gut through reducing the number of 
astrocytes and microglial cells in the (SNpc) (Cui et al., 2022). However, 
on the other hand, the use of antibiotics caused antibiotic resistance 
increased in bacterial pathogens, which could make antibiotics 
ineffective in treating bacterial infections in the body. The gut microbiota 
is thought to represent a reservoir for the potential transmission of 
antibiotic resistance genes from commensals to pathogens, also known 
as the gut resistome (Montassier et al., 2021). Thus, this study examined 
the effects of different doses of levodopa on intestinal microflora 
structure and antibiotic resistance genes in 6-OHDA-induced PD rats. 
Particularly, these results would provide a theoretical basis for the future 
use of levodopa combined with antibiotics in the treatment of PD.

Results

Levodopa treatment changed gut bacteria 
composition.

Based on the relative abundance table of different classification 
levels, the composition and relative abundance of gut bacteria in 

6-OHDA-induced PD rat (6-OHDA), 6-OHDA-induced PD rat 
treated with 5 mg/kg levodopa (6-OHDA+Ldopa5), 6-OHDA-
induced PD rat treated with 10 mg/kg levodopa (6-OHDA+Ldopa10) 
and control groups were examined focusing on the 10 most 
abundant taxa at phylum-, class-, order-, family-, genus-and 
species-levels, respectively, and the rest taxa were set as others. The 
relative abundance histogram of the corresponding taxa annotation 
results of each group was drawn at different classification levels 
(Figure 1). In detail, at the phylum level, the relative abundance of 
Fibrobacteres increased apparently in 6-OHDA+Ldopa10 group 
compared to 6-OHDA group (Figure 2A). At the class level, the 
relative abundance of Bacilli decreased obviously in 
6-OHDA+Ldopa10 group compared to 6-OHDA+Ldopa5 group 
(Figure 2B), and the relative abundance of Negativicutes increased 
strikingly in 6-OHDA+Ldopa10 group compared to 6-OHDA group 
(Figure  2C). At the order level, the relative abundance of 
Lactobacillales decreased notably in 6-OHDA+Ldopa10 group 
compared to 6-OHDA+Ldopa5 group (Figure 2D). At the family 
level, the relative abundance of Lactobacillaceae decreased 
prominently in 6-OHDA+Ldopa10 group compared to 
6-OHDA+Ldopa5 group (Figure 2E). At the genus level, the relative 
abundance of Lactobacillus decreased remarkably in 
6-OHDA+Ldopa10 group compared to 6-OHDA+Ldopa5 group 
(Figure  2F), and the relative abundance of Roseburia increased 
prominently in 6-OHDA+Ldopa10 group compared to the 
6-OHDA+Ldopa5 group (Figure  2G). At the species level, the 
relative abundance of Lactobacillus johnsonii decreased significantly 
in 6-OHDA+Ldopa10 group compared to 6-OHDA and 
6-OHDA+Ldopa5 groups (Figure 2H), while the relative abundance 
of Lactobacillus murinus and Prevotella sp. CAG:485 decreased 
distinctly in 6-OHDA+Ldopa10 group compared to 6-OHDA group 
(Figures 2I,J). These results indicated that an increase in dosage of 
levodopa could potentially change the gut bacteria composition in 
6-OHDA-induced PD rats.

Levodopa treatment changed biomarkers of 
gut bacteria

Next, LEfSe was performed to analyze the differentially abundant 
of gut bacteria among the four groups. In order to screen the species 
biomarkers with significant differences between groups, the rank 
sum test was used to detect the different species in different groups, 
and linear discriminant analysis (LDA) was used to achieve 
dimension reduction and assess the impact of the different species, 
namely, LDA score. LEfSe analysis results of different species between 
groups included histogram of LDA value distribution and 
evolutionary clade diagram (phylogenetic distribution), which 
showed that 75 bacterial communities were different among control, 
6-OHDA, 6-OHDA+Ldopa5 and 6-OHDA+Ldopa10 groups. There 
were 30 biomarkers in control, 13 biomarkers in 6-OHDA, 10 
biomarkers in 6-OHDA+Ldopa5 and 19 biomarkers in 
6-OHDA+Ldopa10 (Figure 3A). The biomarkers in control group 
mainly included Bacteroides_sp_CAG_927 (species), Clostridium 
(genus), Lactobacillus_sp_ASF360 (species), Unclassified_
Bacteroidales (family), and Romboutsia_ilealis (species), among 
which the most abundant was Bacteroides_sp_CAG_927 (species). 
The biomarkers in 6-OHDA group mainly included Lactobacillus_
murinus (species), Firmicutes_bacterium_CAG_424 (species), 
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Faecalibacterium (genus), Firmicutes_bacterium_CAG_646 (species), 
and Alistipes (genus), among which the most abundant was 
Lactobacillus_murinus (species). The biomarkers in 
6-OHDA+Ldopa10 group mainly included Prevotella (genus), 
Prevotellaceae (family), Roseburia_sp_CAG_309 (species), Prevotella 
_sp_P2_180 (species), and Prevotella _sp_P5_92 (species), in which 

the most abundant was Prevotella (genus). The biomarkers in 
6-OHDA+Ldopa5 group mainly included Lactobacillus (genus), 
Lactobacillus_johnsonii (species), Bacteroides_sartorii (species), 
Lactobacillus_animalis (species), and Bifidobacteriates (order), in 
which the most abundant was Lactobacillus (genus). The cladogram 
showed significant changes in each group (Figure 3B).

A B

C D

E F

FIGURE 1

Gut bacteria composition of the 10 most abundant taxa was exhibited. Histogram of relative abundance in 6-OHDA, 6-OHDA+Ldopa5, 6-OHDA+Ldopa10 
and control groups at phylum (A), class (B), order (C), family (D), genus (E) and species (F) level was discerned. The horizontal axis indicates the sample 
name, the vertical axis shows the relative proportion of annotations to a particular type of taxa, the taxa category corresponding to each color block are 
shown on the right side of the bar chart.
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Levodopa treatment changed the ARO 
composition

Resistance genes are ubiquitous in both human gut microbes and 
other environmental microbes. Comprehensive Antibiotic Resistance 
Database (CARD) is a newly emerged resistance gene database in recent 
years. The core component of CARD is ARO, which integrates the 
antibiotic sequence, antibiotic resistance and function mechanism, et al. 

Using the Resistance Gene Identifier program, the unigenes were 
aligned to the CARD. Based on the relative abundance of resistance 
gene, the common top  20 AROs identified in 6-OHDA, 
6-OHDA+Ldopa5, 6-OHDA+Ldopa10 and control groups were tetQ, 
tetW/N/W, tetO, adeF, AAC6-Ib-Suzhou, OXA-397, tetW, tet44, tet32, 
vanTG, sul3, ErmB, tet40, Escherichia_coli_acrR, adeR, mdtB, MCR-5, 
tetBP, ErmF and MexD (Figure 4A). In comparison to the 6-OHDA 
group, the relative percentage of AAC6-Ib-Suzhou in the 
6-OHDA+Ldopa10 group was greater (Figure 4B). In comparison to the 
6-OHDA+Ldopa5 group, the relative percentage of tetW in the 
6-OHDA+Ldopa10 group was lower (Figure 4C). In comparison to the 
6-OHDA group, the relative percentage of vanTG in the 
6-OHDA+Ldopa10 group was lower (Figure 4D). To more intuitively 
observe the proportion of ARO abundance in each group on the whole 
and more intuitively display the overall distribution of ARO abundance, 
the AROs with the top10 abundance was selected to draw the overview 
circle diagram (Figure 4E).

The total number of ARG and ARO did not 
alter significantly after levodopa treatment

In order to investigate the differences in the number of ARG and 
ARO between the sample groups, the box maps of the number of ARG 
and ARO between the sample groups were drawn, which showed that 
the number of ARG and ARO among all groups did not significantly 
differ (Figures 5A,B). A Venn diagram was also used to examine how 
the four groups’ shared ARGs were composed. The Venn diagram for 
the ARG number classified by the four component approaches is 
depicted in Figure 5C. The four component methods complemented 
each other in classification. Four, 7, 14 and 6 ARGs were uniquely 
correctly classified by control, 6-OHDA, 6-OHDA+Ldopa5 and 
6-OHDA+Ldopa10 groups, respectively. Moreover, the Venn diagram 
for the ARG number classified by the three component approaches is 
depicted in Figure 5D. The three component methods complemented 
each other in classification. Eleven, 13 and 26 ARGs were uniquely 
correctly classified by control, 6-OHDA and 6-OHDA+Ldopa5 groups, 
respectively. In addition, the Venn diagram for the ARG number 
classified by the three component methods. The three component 
methods complemented each other in classification. Twelve, 14 and 18 
ARGs were uniquely correctly classified by control, 6-OHDA and 
6-OHDA+Ldopa10 groups, respectively (Figure  5E). Furtherly, the 
Venn diagram for the ARG number classified by the two component 
methods. The two component methods complemented each other in 
classification. Thirty-three and 26 ARGs were uniquely correctly 
classified by control and 6-OHDA groups (Figure 5F).

Discussion

In this study, levodopa resulted in different changes in intestinal 
flora at different species levels in 6-OHDA-induced PD rat model. In the 
10 most abundant taxa analysis, we  found apparent changes in the 
abundance of Fibrobacteres (phylum), Negativicutes (class), Lactobacillus 
murinus (species) and Prevotella sp. CAG:485 (species) between 
6-OHDA and 6-OHDA+Ldopa10 groups were shown. Furtherly, 
between 6-OHDA+Ldopa10 and 6-OHDA+Ldopa5 groups, the 
abundance of Bacilli (class), Lactobacillales (order), Lactobacillaceae 
(family), Lactobacillus (genus), Roseburia (genus) and Lactobacillus 
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FIGURE 2

Differences of bacterial taxa of the 10 most abundant taxa were shown. 
The relative abundance of differentially abundant bacteria taxa in gut 
microbiota among control, 6-OHDA and levodopa-treated 6-OHDA 
groups at phylum level (A), class level (B,C), order level (D), family level 
(E), genus level (F,G) and species level (H–J) was detected. The 
horizontal axis is sample grouping, the vertical axis is the relative 
abundance of the corresponding taxa, the horizontal line represents 
the two groups with a significant difference, and none means there is 
no difference between the two groups. The asterisks indicated 
statistical significance tested using one-way ANOVA followed by 
Dunnett’s test (*p < 0.05, **p < 0.01).
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johnsonii (species) was discerned. However, the gut bacteria composition 
of the 10 most abundant taxa in 6-OHDA+Ldopa5 group did not change 
significantly compared to the 6-OHDA group. These findings suggested 
that the intestinal flora of PD-rats may respond differently to various 
levodopa dosages, and the change of intestinal flora induced by long-
term high dose of levodopa might be one of the causes of its side effects.

LEfSe was employed to analyze the specific biomarkers of gut 
bacteria. This analysis revealed that Prevotella (genus), Prevotellaceae 
(family), Roseburia_sp_CAG_309 (species), Prevotella _sp_P2_180 
(species), Prevotella _sp_P5_92 (species), Phascolarctobacterium_sp_
CAG_207 (species), Prevotella_sp_tf_2_5 (species), Clostridium_sp_
CAG_167 (species), Pseudoflavonifractor_sp_Marseille_P3106 (species), 
Prevotella_sp_CAG_732 (species), Prevotella_oryzae (species), 
Prevotella_sp_tc2_28 (species), Bacteria (kingdom), Lachnospiraceae_
bacterium_NC2004 (species), Prevotella_ruminicola (species), 
Clostridium_sp_CAG_58 (species), Eubacterium_xylanophilum 
(species), Prevotella_bryantii (species) and Prevotella_copri (species) 
were increased after 10 mg/kg levodopa treatment. Lactobacillus (genus), 

Lactobacillus_johnsonii (species), Bacteroides_sartorii (species), 
Lactobacillus_animalis (species), Bifidobacteriates (order), 
Bifidobacterium_animalis (species), Lactobacillus_taiwanensis (species), 
Lactobacillus_apodemi (species), Lactobacillus gasseri (species) and 
Bacteroides_fragilis (species) were increased after 5 mg/kg levodopa 
treatment. Among the biomarkers of levodopa-treated groups, previous 
studies identified that the genus Prevotella played major roles in 
balancing health and sickness (Tett et al., 2021), and there was increased 
acceptance of applying allochthonous probiotic Lactobacillus in 
fermented foods and supplements to maintain health and prevent 
disease (Heeney et al., 2018).

Numerous studies have demonstrated associations between various 
ARO and the significant antibiotic resistance of human microorganisms 
(Sommer et al., 2010; Almeida et al., 2020). The relative abundance of 
AAC6-Ib-Suzhou, tetW, and vanTG changed noticeably following 
10 mg/kg levodopa treatment among the ARO found to be present in 
the gut microbiomes of the individuals in these four groups of this 
investigation. The acquisition of DNA encoding proteins that imparted 

A

B

FIGURE 3

LEfSe comparison of gut microbiome was performed. Only taxa meeting an LDA significance threshold >4 were shown in the figures, namely, the 
biomarker with statistical difference among groups. (A) LDA scores of gut microbiota for the 6-OHDA, 6-OHDA+Ldopa5, 6-OHDA+Ldopa10 and control 
groups, the length of the bar chart represents the LDA Score. (B) Evolutionary branching diagram of the LEfSe results for the 6-OHDA, 6-OHDA+Ldopa5, 
6-OHDA+Ldopa10 and control groups, circles radiating from inside out represent taxonomic levels from phylum to species, each small circle at a different 
classification level represents a classification at that level, and the size of the small circle diameter is proportional to the size of the relative abundance. The 
taxa with no significant difference were uniformly colored yellow, and the biomarkers were colored with the following groups, the taxa names represented 
by letters are shown on the right of the diagram.
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FIGURE 4

Relative abundances of the top 20 ARO were analyzed. (A) The relative abundance of top 20 ARO in control, 6-OHDA, 6-OHDA+Ldopa5 and 
6-OHDA+Ldopa10 groups, the relative abundance of others is the sum of the relative abundance of non-top 20 ARO. (B–D) The relative abundance of 
differentially ARO in gut microbiota between 6-OHDA group and levodopa-treated 6-OHDA groups was discerned. The asterisks indicated statistical 
significance tested using one-way ANOVA followed by Dunnett’s test (*p < 0.05, **p < 0.01). (E) The circle diagram was divided into two parts, the right is the 
group information and the left is the ARO information. Different colors of inner circle represent different groups and ARO, scale is the relative abundance, 
the left side of the inner circle is the sum of the relative abundance of each group of an ARO, and the right is the sum of the relative abundance of each 
ARO in a group. The left side of the outer circle is the relative percentage content of each group in an ARO, and the right side of the outer circle was the 
relative percentage content of each ARO in a group.
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resistance by ATP-dependent efflux, enzymatic inactivation of 
tetracycline, or ribosome protection was confirmed to be a common 
mechanism by which bacteria developed resistance to tetracycline by 
current evidence (Chopra and Roberts, 2001). To date, 60 different 
classes of tetracycline resistance gene had been well studied, including 
oxytetracycline resistance genes， which encode active efflux pumps, 
ribosomal protection proteins (RPPs) and inactivating enzymes, and 
tetW is one of the RPP genes (Warburton et al., 2016). The main cause 
of vancomycin resistance in Gram-positive bacteria is the substitution 
of the peptidoglycan precursor’s d-alanyl-d-Ala target with d-alanyl-d-
lactate or d-Ala-d-Ser, to which vancomycin has a weak binding affinity, 
and vanTG is a resistance gene to vancomycin (Meziane-Cherif et al., 

2015). A common strategy for developing resistance to aminoglycosides 
is the enzyme-mediated transfer of an acetyl group from acetyl-CoA to 
the 6′-amine group of the antibiotic molecule. The aminoglycoside 
6’-N-acetyltransferase type lb. [AAC (6′)-lb] enzyme in integrons, 
transposons, plasmids, and chromosomes of Gram-negative bacteria, is 
responsible for the majority of aminoglycosides-resistant, and AAC6-
Ib-Suzhou is a resistance gene to aminoglycosides (Reeves et al., 2020).

Although a number of pharmaceutical substances could reduce PD’s 
motor and non-motor symptoms by enhancing the nigrostriatal 
pathway’s performance, the disease’s progression cannot be stopped by 
these medications (Schapira, 2005). In fact, the DA precursor levodopa, 
the long-established gold standard in PD therapy, tries to treat PD motor 

A B

C D

E F

FIGURE 5

Antibiotic resistance genes shared among the four groups. (A) Number of antibiotic resistance genes in control, 6-OHDA, 6-OHDA+Ldopa5 and 
6-OHDA+Ldopa10 groups is shown. (B) Number of ARO in control, 6-OHDA, 6-OHDA+Ldopa5 and 6-OHDA+Ldopa10 groups was indicated. (C–F) Each 
circle represents a group in the Venn diagram, the number of overlapped parts represent the number of resistance genes shared among groups, and the 
number without overlap represent the number of specific resistance genes in the group.

https://doi.org/10.3389/fnagi.2023.1122712
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Sheng et al. 10.3389/fnagi.2023.1122712

Frontiers in Aging Neuroscience 08 frontiersin.org

symptoms by supplying the missing neurotransmitter. Levodopa’s 
treatment effectiveness does, however, have a tendency to wane over 
time and is accompanied by very unpleasant motor and/or psychological 
side effects for patients. Therefore, it is crucial that any future therapeutic 
research aim to delay DA neurodegeneration and preventing the 
progression of the disease (LeWitt, 2004; Schapira et al., 2006). In order 
to prevent the loss of DA neurons and reduce the progression of the 
disease, neuroprotection is anticipated to be the main focus of future 
therapeutic development methods for PD (Schapira, 1999), the quest for 
protective agents on PD is still ongoing (Palasz et al., 2020). Since they 
can reduce oxidative stress, protein misfolding, neuroinflammation, and 
mitochondrial dysfunction, antibiotics have attracted fresh investigation 
for their neuroprotective qualities.

Antibiotics enable critical therapies and are crucial for treating 
infectious diseases (Cook and Wright, 2022). Since their widespread 
use in human health began, antibiotics have profoundly altered the 
landscape of infectious diseases, allowing them to be brought under 
control and resulting in a sharp decline in the number of fatalities. 
Today, nevertheless, there is a resurgence of interest in antibiotics 
because of some unexpected side effects unrelated to their 
antibacterial activity. Therefore, it has been amply shown that 
sub-inhibitory concentrations of any antibiotic can alter the 
expression of a large number of gene transcripts in both prokaryotic 
and eukaryotic cells. Moreover, a number of antibiotics, particularly 
tetracyclines and-lactams, have impressive anti-inflammatory 
properties. Tetracyclines, have been shown to generate 
neuroprotection, limit the synthesis of pro-inflammatory molecules 
and the activity of matrix metalloproteinases, improve mitochondrial 
dysfunction and protein misfolding/aggregation, and reduce the 
activation of microglia. Minocycline and doxycycline, two frequently 
used semisynthetic second-generation tetracycline derivatives, 
shown potent neuroprotective efficacy in experimental 
neurodegenerative/neuropsychiatric illnesses with minimal toxicity, 
for instance, in a PD rat model, minocycline can prevent rotenone-
induced neurotoxicity associated with upregulation of Nurr1 
(Bortolanza et al., 2018; Sun et al., 2019). In traction and pole tests, 
a recent study showed that pretreatment with vancomycin reduced 
the motor impairment of PD mice. Vancomycin pretreatment did not 
affect the level of DA or the process of DA synthesis, but it did 
impede DA metabolism by downregulating striatal monoamine 
oxidase B expression (MAO-B). Furthermore, vancomycin 
pretreatment decreased the amounts of astrocytes and microglia in 
SNpc to diminish neuro-inflammation and downregulated the TLR4/
MyD88/NF-B/TNF-signaling pathway in both the brain and intestine 
(Cui et al., 2022).

To conclude, this study revealed that levodopa therapy in PD rat 
model led to changes in resistance genes, which might be related to 
alterations in intestinal flora. Antibiotics have emerged as potential 
drugs to treat PD, but they still face great challenges, such as bacterial 
resistance (Yadav et al., 2021). Levodopa remains the drug of first choice 
for PD, although it generates several side effects (Lane, 2019; Cilia et al., 
2020). According to findings of the present study, appropriate dose of 
levodopa could reduce the number of tetracycline and vancomycin 
resistance genes in intestinal bacteria. Therefore, the combination of 
these two antibiotics with levodopa might be  more effective in PD 
treatment compared with levodopa alone. At the same time, to reduce 
the intestinal bacterial resistant gene thus decreased resistance gene 
transfer. However, our study is preliminary and was limited in power by 
the low number of rats, which need more experimental samples to 

be used in the further study. Moreover, as it is known that other organs 
may also be affected during treatment in a human condition, so using 
levodopa combined with antibiotics to treat PD rats and perform 
behavioral and pathological tests in further research will be  more 
clinically relevant.

Materials and methods

Animals

We housed 6-week-old male SD rats with free access to food and 
water that weighed 180–200 g. The institutional Animal Care and Use 
Committee of Zunyi Medical University (Zunyi, China) gave its approval 
to all animal experiments.

6-OHDA lesion and levodopa treatment

The experiments were carried out as formerly reported (Zheng et al., 
2021). In order to target the unilateral SNpc (coordinates AP-5.2 mm, 
ML-2.1 mm, DV-8.0 mm) relative to the bregma, rats were anesthetized 
and then immobilized in a stereotaxic frame, 6-OHDA solution was 
injected over 3 min with an infusion rate of 1 μl/min, followed by 3 min 
of equilibrium before retracting the needle. Prior to the experiment, all 
rats had recovered after 3 weeks. Then, for 12 weeks, a daily 
intraperitoneal injection of 5 mg/kg or 10 mg/kg levodopa 
was administered.

Fecal DNA extraction

Following a 12-week course of levodopa therapy, feces were 
collected according to the previously reported methodology (Zhang and 
Wang, 2017), Each sample was briefly lysed using lysozyme-containing 
CTAB buffer. Chloroform, isoamyl alcohol (24:1), and isopropanol were 
used to extract the whole DNA. The precipitate was then twice rinsed 
with 75% ethanol before being dissolved in ddH2O, RNase A was then 
used to degrade the RNA.

Metagenomic sequencing

For sample testing, on 1% agarose gels, the level of DNA degradation 
and potential contamination were observed, DNA concentration was 
measured using Qubit® dsDNA Assay Kit in Qubit® 2.0 Flurometer (Life 
Technologies, CA, United States), DNA concentrations greater than 1 
ug are used to construct libraries with an OD value of 1.8 to 2.0. The 
input material for the DNA sample preparations was a total of 1 g of 
DNA per sample. Utilizing the NEBNext® Ultra™ DNA Library Prep 
Kit for Illumina (NEB, United  States) in accordance with the 
manufacturer’s instructions, sequencing libraries were created, and 
index codes were added to assign sequences to specific samples. The 
DNA sample was broken up to 350 bp-sized fragments using sonication, 
after which it was end-polished, A-tailed, and ligated with the full-length 
adaptor for Illumina sequencing and additional PCR amplification. 
Finally, PCR products were purified using the AMPure XP system, and 
libraries underwent size distribution analysis with an Agilent 2,100 
Bioanalyzer and real-time PCR quantification. On a cBot Cluster 
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Generation System, the index-coded samples were clustered in 
accordance with the manufacturer’s recommendations. The library 
preparations were sequenced on an Illumina HiSeq platform after 
cluster generation, and paired-end reads were produced.

Sequencing results pretreatment

To obtain the clean data needed for further analysis, Readfq (V81) 
was used to preprocess the raw data collected from the Illumina 
HiSeq sequencing technology. These were the precise processing 
steps: reads were first removed if they contained low-quality bases 
(default quality threshold value ≤38) above a predetermined portion 
(default length of 40 bp); then, reads were removed if the N base 
reached a predetermined percentage (default length of 10 bp); and 
finally, reads were removed if they shared the overlap with the adapter 
above a predetermined length (default length of 15 bp). Given the 
potential for host contamination in samples, clean data had to be sent 
to the host database, and Bowtie2.2.4 software was used by default to 
filter out reads of host origin (Bowtie2.2.42), the following were the 
parameters: –end-to-end, −-sensitive, -I 200, −X 400 (Karlsson et al., 
2012, 2013).

Metagenome assembly

The SOAPdenovo software (V2.043) was used to assemble and 
analyze the clean data(Luo et  al., 2012), the following were the 
parameters: -d 1, −M 3, −R, −u, -F, -K 55 (Scher et al., 2013; Qin et al., 
2014; Brum et al., 2015; Feng et al., 2015). MEGAHIT software (v1.0.4-
beta) could be used to assemble the Clean Data for samples taken from 
complex environments, such as water, soil, and so forth, and the 
parameters are-presets meta-large (−- min-count 2 --k-min 27 --k-max 
87 --k-step 10). Then, the built Scaftigs were severed from N connection 
and the Scaftigs were left without N (Mende et al., 2012; Nielsen et al., 
2014; Qin et al., 2014). All samples’ clean data were compared to each 
Scaffolds correspondingly using Bowtie2.2.4 software to acquire the PE 
reads not used and the parameters were: --end-to-end, −-sensitive, -I 
200, −X 400 (Qin et al., 2014).

Gene prediction and abundance analysis

The MetaGeneMark (V2.10) software, available at http://topaz.
gatech.edu/GeneMark/, predicted all ORFs for the scaftigs (≥500 bp) 
assembled from single and mixed samples, and filtered with the 
length information shorter than 100 nt from the anticipated result 
via default parameters (Qin et al., 2010, 2014; Li et al., 2014; Nielsen 
et al., 2014; Zeller et al., 2014). For ORF predicted, CD-HIT software 
(V4.5.84; Li and Godzik, 2006; Fu et al., 2012) was adopted to obtain 
the unique initial gene catalog [the genes here referred to the 
nucleotide sequences coded by unique and continuous genes 
(Sunagawa et al., 2015)]. The parameters option (Zeller et al., 2014; 

1 https://github.com/cjfields/readfq

2 http://bowtiebio. sourceforge.net/bowtie2/index.shtml

3 http://soap.genomics.org.cn/soapdenovo.html

4 http://www.bioinformatics.org/cd-hit

Sunagawa et al., 2015) were-c 0.95, −G 0, -aS 0.9, −g 1, −d 0. Using 
Bowtie2.2.4, the clean data from each sample was mapped to the 
initial gene catalog. The number of reads was changed to reflect the 
number of genes mapped in each sample using the parameter settings 
--end-to-end, −-sensitive, -I 200, −X 400 (Li et al., 2014; Qin et al., 
2014). The gene which the number of reads ≤2 (Qin et al., 2012; Li 
et  al., 2014) was filtered in each sample and the gene catalog 
(Unigenes) was eventually used for subsequent analysis. Based on the 
amount of mapped reads and the length of gene, statistic analysis on 
the abundance information of each gene in each sample was done. 
The format was as follow, “r” represented the number of reads 
mapped to the genes and “L” represented gene’s length (Qin et al., 
2010; Karlsson et al., 2012; Cotillard et al., 2013; Le Chatelier et al., 
2013; Zeller et al., 2014; Villar et al., 2015). The abundance of each 
gene in each sample in the gene catalog served as the basis for the 
fundamental data of statistics, core-pan gene analysis, correlation 
analysis of samples, and Venn diagram analysis of number of genes.

Taxonomy prediction

The DIAMOND program (V0.9.95; Buchfink et al., 2015) was used 
to blast the Unigenes to the sequences of Bacteria, Fungi, Archaea, and 
Viruses from the NCBI NR database (Version: 2018-01-026) using the 
parameter-e 1e-5. The LCA algorithm was used for system 
classification of MEGAN (Huson et al., 2011) software to ensure the 
species annotation information of sequences. For the finally aligned 
results of each sequence, each sequence may have multiple aligned 
results, and the result of which the e value the smallest e value * 10 (Oh 
et al., 2014) was chosen. Based on the LCA annotation result and the 
gene abundance table, a table including the number of genes and the 
abundance information of each sample in each taxonomy hierarchy 
(kingdom, phylum, class, order, family, genus, and species) was 
created. The abundance of one specie in one sample was labeled as the 
sum of the gene abundances for the specie. A specie’s gene number in 
a sample was equal to the number of genes with nonzero abundance. 
Based on the abundance table of each taxonomic hierarchy, Krona 
analysis was used to display the generation situation of relative 
abundance, the abundance cluster heat map, PCA (Avershina et al., 
2013; R ade4 package, Version 2.15.3), and NMDS (Noval Rivas et al., 
2013; R vegan package, Version 2.15.3). Anosim analysis was used to 
examine the difference between groups (R vegan package, Version 
2.15.3). To find the distinct species among groups, metastats and LEfSe 
analysis were utilized. In Metastats analysis, the permutation test 
across groups was performed to obtain p value for each taxonomy, and 
then the Benjamini and Hochberg False Discovery Rate was calculated 
to correct p value and obtain q value (White et al., 2009). The LEfSe 
program carried out the LEfSe analysis (the default LDA score is 3) 
(Segata et al., 2011). Finally, a random forest of 6-OHDA was created 
using the random forest (RandoForest) (Breiman, 2001; R pROC and 
randomForest packages, Version 2.15.3). By using 
MeanDecreaseAccuracy and MeanDecreaseGin, the relevant species 
were eliminated. Each group was then cross-validated (by default, 10 
times), and the ROC curve was generated.

5 https://github.com/bbuchfink/diamond/

6 https://www.ncbi.nlm.nih.gov/
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Common functional database annotations

To blast Unigenes to a functioning database, DIAMOND software 
(V0.9.9) was used using the parameter setting of BLASTp, −e 1e-5 (Li 
et al., 2014; Feng et al., 2015). Functional databases were exempted from 
the study, including the KEGG (Kanehisa et al., 2006, 2014) database 
(Version 2018-01-017), the eggnog (Powell et al., 2014) database (Version 
4.58), and the CAZy (Cantarel et al., 2009) database (Version 201,8019). 
The best Blast Hit for each sequence’s blast result was utilized for further 
investigation (Li et al., 2014; Bäckhed et al., 2015; Feng et al., 2015). A 
statistical study of the relative abundance of several functional 
hierarchies was annotated, with the relative abundance of each 
functional hierarchy being equal to the total of the relative abundances. 
The gene number table for each sample in each taxonomic hierarchy was 
obtained based on the function annotation result and gene abundance 
table. A function’s gene number in a sample matched the gene number 
that was ascribed to it, and the abundance was non-zero. The number of 
annotated genes was counted, the overall relative abundance situation 
was displayed, an abundance cluster heat map was displayed, and 
decrease-dimension PCA and NMDS analyzes were performed using 
the abundance tables of each taxonomic hierarchy. Anosim study of the 
difference between groups (inside) based on functional abundance, 
comparative analysis of metabolic pathways, and analyzes of functional 
difference between groups using Metastats and LEfSe were also 
carried out.

Resistance gene annotation

With the parameter setting of BLASTp, evalue ≤1e-30, the Unigenes 
database10 (McArthur et al., 2013; Martínez et al., 2015; Jia et al., 2017) 
was aligned to the CARD database using the Resistance Gene Identifier 
(RGI) program. The aligned result was used to count the relative 
abundance of ARO. The abundance bar charts, abundance cluster 
heatmap, and the numerical difference between groups of resistance 
genes were all shown using the abundance of ARO. The distribution of 
resistance genes’ abundance in each sample, an analysis of the resistance 
genes’ species attribution, and a study of the resistance mechanisms of 
the resistance genes were also carried out.

Statistical analysis

The data were shown as mean ± SEM. For the statistical 
comparison, one-way analysis of variance (ANOVA) was performed 
using SPSS statistical software. The Dunnett’s test was applied to all 

7 http://www.kegg.jp/kegg/

8 http://eggnogdb.embl.de/#/app/home

9 http://www.cazy.org/

10 https://card.mcmaster.ca/

pairwise comparisons of means where analysis of variance revealed 
significant differences. Statistical significance was defined as p < 0.05.
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