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Lung adenocarcinoma (LUAD) is one of the leading fatal malignancy with high morbidity
and mortality worldwide. However, due to its complicated mechanism and lack of
effective clinical therapeutics, early diagnosis and prognosis are still unsatisfactory.
Most of the previous studies focused on cancer stem cells (CSCs), the relationship
between cancer stemness (stem-like characteristics) and anti-tumor immunity has not
been clearly revealed. Therefore, this study aimed to comprehensively analyze the role of
cancer stemness and tumor microenvironment (TME) in LUAD using weighted gene co-
expression network analysis (WGCNA). We constructed a gene co-expression network,
identified key modules, and hub genes, and further explored the relationship between
hub gene expression and cancer immunological characteristics through a variety of
algorithms, including Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data (ESTIMATE) and Gene Set Enrichment Analysis (GSEA).
The hub genes were renamed stemness related genes (SRGs), whose functions were
examined at the transcription and protein levels through survival analysis with additional
samples, Oncomine database, immunohistochemistry, single cell RNA sequencing
(scRNA-seq) and single-sample Gene Set Enrichment Analysis (ssGSEA). Subsequently,
Tumor Immune Dysfunction and Exclusion (TIDE) and Connectivity Map (CMap) were
implemented for treatment and prognosis analyses. As a result, 15 co-expressed SRGs
(CCNA2, CCNB1, CDC20, CDCA5, CDCA8, FEN1, KIF2C, KPNA2, MCM6, NUSAP1,
RACGAP1, RRM2, SPAG5, TOP2A, and TPX2) were identified. The overexpression of
which was discovered to be associated with reduced immune infiltration in LUAD. It
was discovered that there was a general negative correlation between cancer stemness
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and immunity. The expression of SRGs could probably affect our tumor occurrence,
progression, the efficacy of chemotherapy and immunotherapy, and clinical outcomes.
In conclusion, the 15 SRGs reported in our study may be used as potential candidate
biomarkers for prognostic indicators and therapeutic targets after further validation.

Keywords: cancer stemness cells (CSCs), tumor microenvironment (TME), clinical outcome, single cell RNA
sequencing (scRNA-seq), weighted gene co-expression network analysis (WGCNA)

INTRODUCTION

Lung cancer is one of the most widespread and lethal diseases
that plague the global population. It accounts for 11.6% of
new cases and 18.4% of deaths annually, which remains the
highest among males (Bray et al., 2018). According to the
pathological classification of lung cancer, non-small-cell lung
cancer (NSCLC) constitutes approximately 80% of all cases
(Barlesi et al., 2016). As the most prevalent type of NSCLC, lung
adenocarcinoma (LUAD) is more common among non-smokers
(especially women), accounting for 38.5% of all lung cancer cases
(Dela Cruz et al., 2011). Its abnormal appearance in non-smokers
inspired researchers to investigate the underlying risk factors. In
the past few decades, the incidence of LUAD in both genders
has increased much faster than that of squamous cell carcinoma.
Since the 1970s, LUAD in men in the United States has almost
doubled, and that in women has risen from approximately 25
to 33% (Ridge et al., 2013). Despite years of efforts to improve
clinical outcomes with therapeutic strategies including surgery,
radiotherapy, chemotherapy, immunotherapy, the prognosis is
still less than satisfactory. Recently, targeted therapy based on its
molecular alterations has been successfully applied to a variety
of cancers, such as breast cancer (Xuhong et al., 2019), ovarian
cancer (Aust et al., 2020), NSCLC (Santarpia et al., 2013), which
encourages us to seek for more biomarkers that may serve as
targeted agents.

In recent years, the researches of cancer stem cells (CSCs)
have shown promising value (Friedmann-Morvinski and Verma,
2014; Shibue and Weinberg, 2017). CSCs are defined as
the cells with stem cell-like characteristics in cancer, which
have the ability to drive tumor formation and growth, and
influence tumor progression and prognosis (Reya et al.,
2001). Stemness represents the characteristics of self-renewing,
differentiation from the cell of origin, and the ability to
generate other types of cells in particular tissues. In a previous
study, stemness index was introduced to assess the degree of
oncogenic dedifferentiation by a machine-learning algorithm
picking epigenetic and transcriptomic feature sets derived from
non-transformed stem cells and the differentiated progeny of
them, including RNA-based stemness index (mRNAsi), DNA
methylation-based stemness index (mDNAsi), and epigenetically
regulated-mRNAsi (EREG-mRNAsi) (Malta et al., 2018). In
addition to cancer progression, increased stemness index was
found in metastatic tumors and was associated with intratumoral
heterogeneity, which may explain its association with tumor
progression, staging, treatment resistance and poor prognosis
(Shibue and Weinberg, 2017). Nevertheless, the relationship
between cancer stemness (stem-like characteristics) and anti-
tumor immunity has not been clearly revealed.

There is increasing evidence that tumor progression and
prognosis are not only affected by genetic changes (such
as stem cell-like characteristics), but also by the tumor
microenvironment (TME) (Liu et al., 2018; Miranda et al.,
2019). According to a previous study, it was concluded that
the stemness index was related to the content of TME, and
genetic variation in cancer cells may indirectly affect anti-
tumor immunity (Malta et al., 2018). Some studies have
confirmed that the occurrence and progression of tumors can
be regulated by immune cells and factors in TME, which
become promising targets for treatment and the basis of
immunotherapy (Elinav et al., 2013; Topalian et al., 2016;
Nagarsheth et al., 2017). For instance, blockers of programmed
cell death protein 1 (PD1) and cytotoxic T-lymphocyte-associated
antigen 4 (CTLA4) indicate that there are broad and diverse
opportunities for enhancing anti-tumor immunity by modulating
the immune responses (Pardoll, 2012). Therefore, it is necessary
to supplement the research on the potential mechanism of CSCs
and further apply them in treatments, especially the treatments
related to immunity.

As a bioinformatics method in the field of medical data
processing, weighted gene co-expression network analysis
(WGCNA) has been used in numerous kinds of cancers, such
as prostate cancer (Wang et al., 2009) and breast cancer
(Presson et al., 2011). On this basis, we can describe the
correlation between gene expression in different samples and
identify candidate co-expressed genes or targets (Langfelder
and Horvath, 2008). In this study, WGCNA was conducted
to identify the potential gene modules, from which the key
modules and genes related to cancer stemness were selected.
The key genes in the chosen module were further validated
by a variety of approaches. The expression of which was
found to be related to cancer prognosis, staging, epithelial-
mesenchymal transition (EMT) and reduced immune infiltration.
The results also suggested that the efficacy of chemotherapy
and immunotherapy could be different from the differential
expression of key genes.

MATERIALS AND METHODS

Database, Stemness Index, and Immune
Score
In this study, we obtained the RNA-sequencing (RNA-seq) data
of 533 LUAD samples and clinical characteristics of 522 LUAD
samples from The Cancer Genome Atlas (TCGA) database1.

1https://portal.gdc.cancer.gov
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The TCGA database demonstrates the landscape of primary
tumors by forming the integrated molecular profiles comprising
genomic, transcriptomic, epigenomic, and post-translational
proteomic characteristics, as well as histopathological and clinical
annotations. A total of 507 LUAD patients with available
transcriptome profiling and clinical data were finally retained.

Gene expression datasets (GSE68465, GSE68571, and
GSE69405) were downloaded from the Gene Expression
Omnibus (GEO) database2. Among them, datasets of GSE68465
and GSE68571 were used for verifying the role of hub genes in
clinical outcomes, and the single cell RNA sequencing (scRNA-
seq) dataset GSE69405 was used to explore the relationship
between hub genes and tumor-related signaling pathways.

The stemness index (mRNAsi index) was obtained from the
attachment of the previous article (Malta et al., 2018), which
was calculated by a one-class logistic regression (OCLR) machine
learning algorithm (Sokolov et al., 2016) and was quantified
as mRNAsi using a combination of multi-platform analysis.
In addition, the immune cell infiltration was quantified using
Estimation of STromal and Immune cells in MAlignant Tumors
using Expression data (ESTIMATE) algorithm (Yoshihara et al.,
2013), which possesses specific and sensitive discrimination
of immune cells and is able to compute the immune score
representing the proportion of tumor-infiltrating lymphocytes
(TILs) in tumor tissues.

Survival Analysis
For prognostic comparisons, the overall survival was analyzed
enrolling 498 LUAD samples with stemness index, immune score
and hub gene expression. The “surv_cutpoint” function in R
package “survminer” was used to find the best cut-off points
of continuous variables (i.e., mRNAsi, ImmuneScore and score
of SRGs). In this study, we divided the patients into the high-
value group or the low-value group using the best cut-off value
of each variable.

Construction of the Co-expression
Network
The co-expression network was constructed using the R package
WGCNA (Langfelder and Horvath, 2008). Genes having the
highest 50% of variance were extracted to guarantee the accuracy
and heterogeneity of bioinformatics statistics for following
co-expression network analysis. The co-expression similarity
matrix was formed by absolute values of correlations among
transcription levels. We modified the Pearson correlation matrix
for the paired genes. The definition of co-expression similarity
(si,j) was the absolute value of the correlation coefficient between
the profiles of nodes i and j. It was calculated as follows:

si,j =
∣∣cor

(
xi, xj

)∣∣ ai,j = sβi,j(β ≥ 1)

Here, xi and xj represented a series of the expression value
for gene i and j. Pearson’s correlation coefficient of gene i and j
was represented by cor. Weighed network adjacency was further
defined by raising co-expression similarity to power β. The

2http://www.ncbi.nlm.nih.gov/geo/

adjacency coefficient (ai,j) was calculated to reflect the correlation
between each pair of nodes. An appropriate β value of five
(scale-free R2 = 0.95) was chosen as the soft-threshold parameter
to improve the similarity of the matrix and to bring about a
scale-free co-expression network. Modules were further spotted
by hierarchical clustering of the weighting coefficient matrix.
Additionally, the module membership of gene i in module q was
defined as:

Kcor, i(q) := cor(xi,E(q))

The xi represented the profile of gene i. E(q) represented
the module eigengene which was the principal member of
an individual module of module q. Additionally, the module
membership measured K(q) distributes in [−1, 1] and stood for
the closeness of gene i to module q, q = 1,. . ., Q.

Identification of Key Module and Hub
Genes
In order to determine the stemness related module, the
genetic significance (GS), module significance (MS) and module
eigengenes (MEs) were introduced. GS was the p-value in the
linear regression between gene expression and clinical data, and
was converted into the log10 version of it (GS = lgp). The average
value of GS was defined as MS, which represented the consistency
of module and sample characteristics. Module eigengene was the
superiority of the component in each module. The overall gene
expression was represented by the feature expression profile of
a specific module. The statistical significance depended on the
corresponding p-value.

Afterward, GS and module membership (MM) were calculated
for each gene in the blue module. MM was defined as the
correspondence between genes and expression profiles. We chose
the cut-off criteria of cor.gene MM > 0.8 and cor.gene GS > 0.5 to
screen the hub genes. Then the hub genes were renamed stemness
related genes (SRGs).

Validation of Stemness Related Genes
(SRGs)
We systematically examined the expression distribution and
prognostic performance of SRGs at the transcription and protein
levels. The performance of SRGs could be studied through R
package Gene Set Variation Analysis (GSVA), which took a gene-
by-sample expression matrix as an input and outputs a gene
set-by-sample enrichment score matrix.

Initially, a total of 432 LUAD samples in GSE68465 and
86 LUAD samples in GSE68571 from GEO database were
additionally used to verify the prognostic performance of SIRG
signature. The Oncomine database3 allowed us to analyze the
degree of difference between the expression of SRGs in LUAD
tissues and normal tissues. Survival analysis was performed again
to evaluate the correlation between SRGs expression and clinical
characteristics and to compare it with the overall survival rate
predicted by the stemness index and immune score, respectively.
Besides, we evaluated the relationship between the SRGs and
tumor staging and serval important tumor related signaling

3https://www.oncomine.org
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pathways and signatures. The validation of SRGs at the protein
level was achieved by immunohistochemistry of SRGs based on
the images in the Human Protein Atlas database.

To verify the relationship between SRGs and anti-tumor
immunity, we compared the hematoxylin and eosin (H&E)
histopathological images of TILs in LUAD samples between high
and low SRGs expression groups. The H&E histopathological
images were downloaded from the Cancer Imaging Archive
(TCIA) portal4 and were further processed by Openslide Python
library (Goode et al., 2013). Besides, the enrichment analysis
of the key module was performed through Metascape5. In
order to study the potential molecular biological mechanisms
of the SRGs, we then downloaded data from the Molecular
Signatures Database and performed gene-set enrichment analysis
(GSEA) analysis.

Inference of Infiltrating Cells in TME
The ESTIMATE algorithm (Yoshihara et al., 2013) was applied
to explore the immune function of SRGs in term of immune
responses. The score calculated by this algorithm represented
the proportion of immune infiltration in tumor tissues.
Subsequently, the infiltration levels of immune cells were assessed
by Single-Sample Gene Set Enrichment Analysis (ssGSEA)
(Bidkhori et al., 2013). It generated a single value to qualify
the extent to which a gene set is coordinately up or down-
regulated in a single sample (Barbie et al., 2009). A total of
24 immune phenotypes were involved in our study, including
B cells, T cells, natural killer (NK) cells, dendritic cells (DCs),
macrophages, and other TILs.

Potential Application of SRGs With
Clinical Therapeutic Strategies
The clinical value of SIRG was assessed through subclass mapping
and Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm (Hoshida et al., 2007; Jiang et al., 2018). According
to the pharmacogenomics database [the Genomics of Drug
Sensitivity in Cancer (GDSC)6], five first-line medications for
LUAD treatment (Cisplatin, Docetaxel, Gemcitabine, Paclitaxel,
Vinorelbine) were selected, and the effect of chemotherapy was
predicted by R package “pRRophetic.” The ridge regression
was used to calculate the half-maximal inhibitory concentration
(IC50) of each sample, then to assess the precision of prediction.

Moreover, we used the connectivity map (CMap) analysis
and mechanisms of action (MoA) database to predict the
relationship between small molecular inhibitors usage and
SRGs in LUAD. CMap is an online pharmacogenomic database
cataloging gene expression data from cultured cells treated
individually with various chemicals, including a variety of
phytochemicals. It connected small molecule drugs with diseases
via gene-expression signatures, and each medicine was profiled
by different cell lines. The connectivity score was adopted to
estimate the degree of connectivity between the compound and
the query signature with a range of −1 to 1. A positive score
indicates that an agent might facilitate the expression of query

4http://www.cancerimagingarchive.net/
5http://metascape.org
6https://www.cancerrxgene.org/

signature, while a negative score implies that a drug might repress
or reverse the expression trends of gene signature.

In this study, we uploaded the differentially expressed genes
(DESeq2, adjusted p< 0.05 and | log2 fold-change| >1.5) between
high and low SIRG group to the connectivity map website7.
Combined with the mechanisms of action (MoA) database,
specific small molecular compounds with negative connectivity
enrichment scores were selected as potential therapeutic
molecules to the LUAD patients with highly expressed SRGs.

RESULTS

Significant Correlation of Stemness
Index, Immune Score, and Clinical
Outcome
We downloaded the transcriptome dataset and clinical
information of LUAD samples from the TCGA database,
including gender, age, life-status, survival time and Tumor-
Node-Metastasis (TNM) stage classification. The mRNAsi score
(stemness index) was obtained from a previous study (Malta
et al., 2018) based on the OCLR machine-learning algorithm
(Sokolov et al., 2016). Here, mRNAsi was used to describe the
similarity between tumor tissue and stem cells based on the
gene expression. As shown in Figure 1A, compared with lower
mRNAsi score group, patients with higher mRNAsi scores have
shorter overall survival (p = 0.033), suggesting that high stemness
index could be a risk factor for LUAD patients.

The correlation between tumor-related immunity and clinical
performance was demonstrated in Figure 1B. Contrary to the
survival analysis of mRNAsi scores, people with high infiltration
levels showed significantly better outcomes than those with low
infiltration levels in TME (p < 0.001). In term of staging,
mRNAsi scores increased with the progression of cancer from
early to advanced stage while the immune scores changed
oppositely (Figure 1C).

WGCNA: Identification of the Stemness
Related Module and Genes
Based on the different gene characteristics of cancer tissues,
we used WGCNA to construct a co-expression network to find
modules and genes that were significantly related to mRNAsi and
immune score. The power of β = 5 (scale-free R2 = 0.95) was
chosen as the soft-thresholding parameter (Figure 2A) to ensure
a scale-free network. Afterward, GS and MM were calculated
for each gene, followed by the setting of the thresholds. The
cut-off criteria of cor. GS > 0.5 and cor. MM > 0.8 were
set to identify genes with relatively high correlation to the
feature in the key module (Figure 2D). As shown in Figure 2C,
the average link hierarchical clustering identified a total of 18
modules. The characteristics of immunity and stemness were
represented by immune score and mRNAsi, respectively. The
correlation between immune and stemness in each module were
remarkably reverse. The heatmap plot of the adjacencies in the
eigengenes network was shown in Figure 2B.

7https://clue.io/
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FIGURE 1 | (A) Kaplan-Meier curves illustrating the relationship between cancer stemness and survival probability. (B) Kaplan-Meier curves illustrating the
relationship between immunity infiltration and survival probability. (C) Correlation between stemness, immunity, expression of stemness related genes (SRGs), and
the progression of LUAD from stage I to IV.

We selected the blue module as the key module, for it was
most significantly related to stemness and immunity among the
18 modules. Because of our aim to explore the role of SRGs
in treatment strategies and the potential application of SRGs
as targets in drug design, we preferred to choose candidate
genes that were highly up-regulated in the tumor tissue. The
yellow module was excluded although it was also significantly
related to both features. To assess the interaction of genes in
the blue (key) module, we used the Metascape for enrichment
analysis. Most of genes of the blue module have significant
functional connections in cell proliferation and metabolism-
related signaling pathways (Figure 2E).

Ultimately, 15 co-expressed genes were screened out,
including CCNA2 (cyclin A2), CCNB1 (cyclin B1), CDC20
(cell division cycle 20), CDCA5 (cell division cycle associated
5), CDCA8 (cell division cycle associated 8), FEN1 (flap

endonuclease 1), KIF2C (kinesin family member 2C), KPNA2
(karyopherin α2), MCM6 (minichromosome maintenance
complex component 6), NUSAP1 (nucleolar and spindle-
associated protein 1), RACGAP1 (Rac GTPase-activating protein
1), RRM2 (ribonucleotide reductase small subunit M2), SPAG5
(sperm-associated antigen 5), TOP2A (topoisomerases type IIα),
and TPX2 (TPX2 microtubule nucleation factor).

Validation of SRGs
To verify the potential value of the selected SRGs, we performed
functional verification at both transcription and protein levels.
Figure 3A demonstrated that the higher expression of 15 genes
in LUAD cases was associated with decreased overall survival
(p < 0.0001, HR = 1.90). Two independent cohorts (GSE68465
and GSE68571) obtained from the GEO database were used to
verify the prognostic performance of the SRGs (Figures 3B,C).
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FIGURE 2 | WGCNA of LUAD (A) Analysis of the scale-free fit index for various soft-thresholding powers (β) and the mean connectivity for various soft-thresholding
powers. (B) Heatmap plot of the adjacencies in the eigengenes network. (C) Correlation between the module eigengenes and clinical traits of LUAD, including
immune score, mRNAsi and EREG-mRNAsi. The correlation coefficient in each cell represents the correlation between the modules and traits, which increases in
size from blue to red. The corresponding p-value is annotated. (D) Scatter plot of module eigengenes in blue module with cutoffs of cor.gene MM > 0.8 and
cor.gene GS > 0.5 in order to select hub genes. (E) METASCAPE enrichment network visualization cluster in enrichment analysis of SRGs. Each circle node
represents one term, and each color represents its cluster identity, showing the intra-cluster and inter-cluster similarities of enriched terms. Cluster annotations are
shown in color code.
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FIGURE 3 | (A) Survival analysis of SRGs signature based on data from TCGA database. (B,C) Survival analysis of SRGs signature based on data from GEO
database (GSE68465 and GSE68571). (D) The mRNA expression patterns of SRGs in several kinds of cancers. The differences of mRNA expression between
tumors and normal tissues based on Oncomine database. The number in each colored cell represents the number of researches meeting these thresholds with color
depth determined by the gene rank. The red cell suggests that the mRNA levels of target genes in tumor tissues are higher than that in normal tissues, while the cell
in blue means the opposite.

The results were consistent with the conclusion that SRGs were
associated with poor prognosis. Compared with the mRNAsi
(HR = 1.24) and immune score (HR = 0.70), the SRGs performed
better in prognostic prediction, which were also more stable than
stemness or immunity alone.

Furthermore, we analyzed the genes expressed between tumor
and normal tissues through the Oncomine database3 (Figure 3D).
The threshold limits were set as follows: p-value, 1E-3; fold
change, 1.5; gene level, 10%; data type, mRNA. As a result, the
SRGs overexpressed not only in lung cancer, but also in many
other types of cancers, especially breast cancer, colorectal cancer
and sarcoma. In addition, the verification of protein level was
analyzed using immunohistochemistry provided by the Human
Protein Atlas (HPA) database. As shown in Figures 4A–N,
compared with normal tissues, LUAD samples had significantly
higher protein levels of SRGs.

Moreover, to further assess SRGs related signaling pathways,
we performed Gene Set Enrichment Analysis (GSEA) based on
HALLMARK and KEGG database. As shown in Figures 5A,B,
group with highly expressed SRGs was mainly enriched in
several tumorigenesis and cell proliferation-related signaling
pathways, such as MYC targets, cell cycle, P53 signaling
pathways, whereas the group with low expressed SRGs
was mainly enriched in immune regulatory pathways,
including immune network for IgA production, IL2 STAT5
signaling, etc. In order to reduce the potential interference
factors, we used pure cancer cells to explore the role of
SRGs in tumor progression and the results demonstrated
that SRGs expression was positively associated with several
biological processions, including cell cycle, proliferation,
DNA repair, DNA damage, and epithelial-mesenchymal
transition (EMT). On the contrast, the inflammation

Frontiers in Genetics | www.frontiersin.org 7 September 2020 | Volume 11 | Article 549213

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-549213 September 14, 2020 Time: 18:15 # 8

Zeng et al. Stemness Genes Affect Immune Infiltration

FIGURE 4 | Immunohistochemistry images of the 15 SRGs (CCNA2, CCNB1, CDC20, CDCA5, CDCA8, FEN1, KIF2C, KPNA2, MCM6, NUSAP1, RACGAP1,
RRM2, SPAG5, TOP2A, and TPX2) based on the Human Protein Atlas database were demonstrated in (A–N). The level of protein expression was higher in tumor
tissue (X-t) than that in normal tissue (X-n). X = A, B, and N (images of KIF2C were absent from the database).
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FIGURE 5 | Gene Set Variation Analysis (GSVA) showing RNA sequencing (RNA-seq)-based immune and stemness signature evaluated in the context of SRGs sets
representative for immunity, stemness and cancers. (A) GSVA analysis of HALLMARK database. (B) GSVA analysis of KEGG database.

FIGURE 6 | Heatmap of single cell RNA sequencing (scRNA-seq) of GSE69405 from the Gene Expression Omnibus (GEO). SRGs expression was positively
correlated with several biological processions, including cell cycle, proliferation, DNA repair, DNA damage, epithelial-mesenchymal transition (EMT), which was
demonstrated in red. In contrast, the inflammation and quiescence were in negative correlation with expression of SRGs, which was displayed in blue.

and quiescence were in a negative association with SRGs
expression (Figure 6).

SRGs Expression With Immune
Infiltration
To verify the correlation between stemness and immune
infiltration, we used H&E histopathological images to compare
the degree of immune infiltration with different expression levels
of SRGs (high vs low). In Figure 7, the infiltration pattern of

TILs in patients with high and low SRGs expression was obviously
different. The level of TILs in high SRGs expression tissues could
be lower than low SRGs group.

Various immune cells in TME regulate the anti-tumor
response through activation or suppression. Therefore, ssGSEA
was performed to define the degree of up-down regulation
of a particular component of TILs in a single sample. Our
research involved 24 immunophenotypes, namely B cells, T cells,
natural killer (NK) cells, dendritic cells (DCs), macrophages
and other tumor-infiltrating lymphocytes. The results of the
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FIGURE 7 | The hematoxylin and eosin (H&E) histopathological images of TILs in LUAD samples between high and low SRGs expression groups downloaded from
the TCIA database.

ssGSEA showed that the increase in infiltration status was
negatively correlated with tumor progression (Figure 8), which
was consistent with the above conclusion. Generally, most of
the TILs including T cells, macrophages, DCs were negatively
correlated with the expression levels of SRGs. However, the
level of Th2 cell infiltration was positively correlated with
SRGs expression.

SRGs Expression With Clinical
Therapeutic Strategies
Previous findings indicated that the expression of SRGs
was significantly related to immune infiltration (negatively),
stemness (positively) in LUAD samples. It indicated that the
expression of SRGs played an important role in the tumor
progression and immune infiltration, which could be a benefit
to formulate clinical treatment strategies. To confirm this
hypothesis, the “pRRophetic” R package was used to predict
the therapeutic effects of five LUAD first-line chemotherapy
drugs, including cisplatin, docetaxel, gemcitabine, paclitaxel,
and vinorelbine. As shown in Figure 9, the half-maximal
inhibitory concentration (IC50) of the higher expression
SRGs group was significantly lower (Wilcoxon Rank Sum
Test, p < 0.001).

The Connection Map (CMap) is a database related to small
molecule drugs and mechanism of action (MoA), which was
used to analyze the therapeutic value of small molecule inhibitors
in LUAD. As a result, it was found that cytochrome P450
inhibitors, SIRT activators, phosphodiesterase inhibitors, and
a total of eight inhibitors were potentially effective (Table 1).
Through TIDE algorithm, we found that immunotherapy was
predicted to relatively ineffective for patients with high SRGs
expression (Figure 10).

In summary, LUAD patients with high expression of
SRGs tended to benefit less from immunotherapy, but in
contrast, they could be more likely to receive positive results
from chemotherapy.

DISCUSSION

The fact that chemotherapy and immunotherapy are not effective
for some patients prompted us to search for the underlying
molecular mechanism. In this study, after obtaining resources
from the Internet and databases, we successfully identified the
blue module and 15 genes which were significantly related
to cancer stemness and immunity. After that, we further
explored their relationship with immune infiltration patterns,
functions in signaling pathways and clinical outcomes. Based
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FIGURE 8 | Single-sample Gene Set Enrichment Analysis (ssGSEA). Heatmap showing the correlation of transcriptome expression of SRGs with infiltration level of
24 immune cell types, mutation status of EGFR and KRAS, event, new event, stage and sex, as annotated in the right panel. The correlation coefficient represents
the correlation between the event and the expression of SRGs. For example, the correlation coefficient of immunocyte infiltration and SRGs expression increases as
the colors vary from blue to red in size.

on the findings, we suggested that the 15 SRGs could be used
as biomarkers for treatment strategies design and prognosis
prediction for LUAD patients.

Some previous studies have been published in this field,
reporting genes related to stemness, which are associated with
cancer recurrence, metastasis, resistance to treatment, and poor
prognosis (Pan et al., 2019; Qin et al., 2020; Zhang et al., 2020;
Zhao et al., 2020). For instance, a recent study identified 13 key
genes enriched from KEGG pathway (Zhao et al., 2020). Four
of which are the same as we found, namely, CCNA2, CCNB1,

CDC20, and MCM6. The differences can be explained by gene
co-expression (most of the genes identified in other studies were
also in the key module of our study, but some of them have not
been selected as the hub genes), samples diversity, random errors
in the algorithm, or other unknown reasons. Compared with the
previous studies, we adopted a similar process to screen candidate
hub genes like them. However, we have certain advantages over
these papers in further evaluation and exploration based on
candidate genes. Our research not only explored the expression
distribution, related pathways, and prognostic performance of
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FIGURE 9 | Differential putative chemotherapeutic response in high expression and low expression of SRGs groups. (A–E) The box plots of the estimated IC50 for
five commonly applied clinical chemotherapeutic drugs including Cisplatin, Docetaxel, Gemcitabine, Paclitaxel, and Vinorelbine manifested the correlation between
expression of SRGs and sensitivity to the chemotherapy.

these genes, but also explore the function of SRGs on TME and
clinical therapies systemically.

A couple of SRGs reported by us were found to function
in certain pathways and also other kinds of cancer according
to previous studies. For example, FEN1 functions in multiple
pathways of DNA metabolism and promotes tumor progression
(Konsavage et al., 2012). KPNA2 is related to a kind of growth
factor FGF1. It improves the functions of certain signaling
pathways and ultimately increases the proliferation of cancer cells
(Yamada et al., 2016). It has been reported that CCNB1 is a
potential biomarker target in LUAD (Malta et al., 2018) and that
CDC20 is highly expressed in LUAD tissues and may serve as a
new type of prognostic biomarker (Liu et al., 2019). Apart from
lung cancer, some SRGs are also related to other cancers. For
instance, it was found that CCNB2 is overexpressed in a variety of
tumors, including gastric cancer, bladder cancer, prostate cancer,

uterine corpus endometrial carcinoma (Shi et al., 2016; Huang
et al., 2017; Han et al., 2018; Shen et al., 2018).

In term of immunity, the overexpression of SRGs, which
was positively related to cancer stemness, was associated with
reduced immune infiltration. The findings were in accordance
with previous studies (Limagne et al., 2016; Liu et al., 2018; Malta
et al., 2018; Miranda et al., 2019; Liao et al., 2020). It has been
reported that transcriptome-derived stromal and immune scores
have implications for patient survival, metastasis and recurrence
(Liu et al., 2018). A previous study also confirmed that the
stemness index is related to immune microenvironment (Malta
et al., 2018). Some SRGs, CCNA2, and CDC20, has demonstrated
significant correlation with multipotent stromal cells, which are
believed to have an impact on immune suppression (Bellayr
et al., 2016). CDC20, CDCA8, and KIF2C were up-regulated in
EBV-transformed lymphocytes and controlled several biological
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TABLE 1 | CMap and MoA analysis of samples with different SRGs expression.

CMap name Mean Enrichment p MoA

Resveratrol −0.672 −0.78 0 Cytochrome P450 inhibitor,
SIRT activator

Zardaverine 0.543 0.922 0.00004 Phosphodiesterase inhibitor

0173570–0000 −0.656 −0.799 0.00016

5248896 −0.853 −0.988 0.00032

Withaferin A −0.681 −0.878 0.00052

Pyrvinium −0.665 −0.739 0.00066

Trifluoperazine −0.448 −0.479 0.0007 Dopamine receptor antagonist

Etoposide −0.333 −0.842 0.00109 Topoisomerase inhibitor

Mevalolactone 0.462 0.917 0.00118

Puromycin −0.585 −0.839 0.00121 Protein synthesis inhibitor

Semustine −0.307 −0.838 0.00121

Parthenolide −0.532 −0.835 0.00131 NFkB pathway inhibitor,
Adiponectin receptor agonist

Lomustine −0.393 −0.823 0.00187

Loperamide −0.404 −0.683 0.00262 Opioid receptor agonist

Irinotecan −0.695 −0.885 0.00298 Topoisomerase inhibitor

Table showing the enrichment score of each compound by Connectivity
Map (CMap) database and mechanism of actions (MoA) for LUAD with
p-value annotated.

processes including immunity response (Dai et al., 2012).
RACGAP1, TOP2A and some other genes co-expressed to
regulate the immunity response in hepatocellular carcinoma

(Drozdov et al., 2012). Since the immune infiltration of patients
with high SRGs expression is reduced, it may explain the decline
in the efficacy of immunotherapy.

Furthermore, the results of ssGSEA also showed that most
TILs, such as T cells, Tregs, Th17, macrophages, and DCs,
were negatively correlated with the expression levels of SRGs.
Whereas, the infiltration level of Th2 cell was positively correlated
with the SRGs. Th2 cell is one of the main T cell subtypes found
in TME, which is known to help B cells and has the ability to
produce anti-inflammatory cytokines (including IL-4, IL-5, and
IL-13) (Mosmann and Coffman, 1989; Walker and McKenzie,
2018). Some studies reported that the cytokines secreted by
Th2 are related to the suppression of the anti-tumor immune
response (Kusuda et al., 2005; Ubukata et al., 2010), which is in
accordance with our finding that the infiltration pattern Th2 cell
was opposite to other TIL.

In addition, enrichment analysis showed that highly expressed
SRGs were mainly involved in pathways related to mitosis
and gene repair, including cell cycle, DNA redistribution,
DNA repair, p53 signal transduction pathway, and MYC
target. It indicates that those overexpressed genes are
related to excessive cell proliferation is related to tumor
progression. We found that the lower expression of SIRG
was related to pathways related to immune response and
metabolism, such as IgA production, IL2 state signaling,
and immune network of hematopoietic cell lineage. The
results indicate that the SRGs may play the role as a whole

FIGURE 10 | Alluvial diagram of SRGs expression with progression of LUAD and efficacy of immunotherapy. It was demonstrated that groups with low expression of
SRGs were more sensitive to the immunotherapy.
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and are related to the progression of cancer and the
efficacy of immunotherapy.

Compared with mRNAsi driven from the supervised machine
learning, the SRGs performed better in prediction prognosis,
and had greater interpretability and robustness, for there are
plenty of algorithms that can be used to predict the therapies
efficacy, such as TIDE used in our research. Based on the
results, we provided an innovative treatment strategy which
recommends chemotherapy or using certain small molecule
inhibitors targeting SRGs in combination with immunotherapy
for patients with high expression of SRGs to achieve better
clinical outcomes.

In conclusion, 15 SRGs were identified as biomarkers of
LUAD, which are not only suitable for prognosis, but also helpful
to measure the treatment effect and tumor recurrence. The
expression of SRGs is positively correlated with cancer stemness,
but negatively related to anti-tumor immunity. However, there
were some limitations in our study. Firstly, limited by the sample
size and potential bias of the population included in our study,
multicenter studies need to be supplemented. Besides, some
of the findings can only result in information of correlation,

not definite causation. Therefore, further molecular biology
experiments and clinical verification are needed to confirm
our discoveries.
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