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The existing meta-heuristic distribution network reconfiguration (DNR) algorithm
has excellent optimization ability through iteration. However, it is difficult to realize
the large-scale fast calculation and online real-time response of DNR solution. In
order to improve the security and low-carbon economy of distribution network, this
paper proposes a fast reconfiguration method of distribution network based on
convolutional neural network (CNN). Taking IEEE 33 system and 185 node system as
examples, the effectiveness of the proposed method is verified. The reasons why the
proposed method can achieve better results are as follows: By mining the historical
data of distribution network, the corresponding relationship between load mode
(LM) and its optimal topology is established. For a load mode in actual operation, the
reconfiguration scheme can be quickly obtained according to the established
corresponding relationship. Thus, iterative calculation is avoided and
computational efficiency is improved. A multi-branch CNN model is established
based on the distribution network structure, and an inception module is introduced
into CNN to improve the ability of CNN to extract data features. This model can
reduce the dependence on the specific distribution network structure and is easy to
expand.
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1 Introduction

In the context of global warming, low-carbon operation is one of the trends in distribution
system. At present, the distribution network can achieve the purpose of low-carbon operation
(Qing et al., 2021) by means of operation optimization such as reconfiguration (Zhan et al.,
2020) and multi-energy coupling comprehensive energy system (Zhang et al., 2022; Li Y et al.,
2021). Distribution network reconfiguration (DNR) is an important part of distribution
management system (DMS) which can improve the operating state of distribution network
(DN) (Zhan et al., 2020). In the smart grid environment, the value of power grid operation data
cannot be ignored. Big data technology has been practically applied in operation and
management practice of distribution network (Zainab et al., 2021). For DNR problem,
mining the relationship between the historical operation data of distribution network and
the reconfiguration scheme, so as to achieve rapid adaptive reconfiguration, is conductive to
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improving the economic benefits of power system operation, in line
with the mainstream of low-carbon energy development.

In the early stage of DNR development, distribution network
structure was relatively simple and power flow direction was single.
The reconfiguration analysis methods commonly used mainly
included two categories: analytical algorithm based on
mathematical optimization (Wang C et al., 2020; Yi et al., 2021).
Traditional heuristic algorithm based on simplified model solution of
distribution network (Talukdar et al., 2019).

With the access of distributed Generation (DG), bidirectional
power flow occurs in DN. The traditional DNR method based on
unidirectional power flow is no longer applicable (Li et al., 2020; Yang
et al., 2020). Therefore, various intelligent algorithms and their hybrid
algorithms are gradually used to solve DNR problems.

The design idea of intelligent algorithm is derived from the
simulation of natural process. If there is no time constraint, the
algorithm can guarantee the global optimal solution. At present,
the intelligent methods commonly used in DNR are mainly various
meta-heuristic algorithms, such as particle swarm algorithm (Wu
et al., 2021a), genetic algorithm (Jin et al., 2020), and ant colony
algorithm (Chen and Dai, 2020). In order to improve algorithm,
researchers adopted measures such as compression solution space
(Wang J et al., 2020), addition of mutation operation (Pegado et al.,
2019) and collaborative solution of multiple algorithms (Huang
et al., 2021; Prasad and Sushama, 2022). However, the iterative
optimization method of the above algorithms not only gives it
strong optimization performance, but also determines that it is
difficult to achieve efficient solution of the distribution network
reconfiguration scheme.

Real-time operation is an inherent attribute of NN (Neural
Network) algorithm, from the proposed neuron M-P model to the
establishment of DL (Deep Learning) theory, Neural Network model.
In particular, deep learning model has been widely applied in many
fields with real-time analysis requirements, such as image annotation
(Abrahamyan et al., 2021), speech recognition (Hussain et al., 2021),
semantic understanding (DE Oliveira et al., 2020; Xie et al., 2021), and
achieved good application effects (Zheng et al., 2021). In power
system, deep learning model has also been introduced into
measurement data completion (Wang et al., 2021), fault
identification and line selection (Wu et al., 2021b), load prediction
(Alavi et al., 2021; Li L. et al., 2021; Li et al., 2021a; Li et al., 2021b), and
state estimation (Huang et al., 2021).

As early as in the 1990s, some scholars applied Artificial Neural
Network (ANN) to solve DNR problems (Zhe et al., 2020). Neural
Network is a data-driven algorithm, and themodel quality is extremely
dependent on the quantity and quality of training data. For a long
time, the acquisition of distribution network operation data has been
the constraint of NN algorithm in the development of DNR problem.
At present, with the improvement of monitoring equipment in
distribution network, the massive data generated by it has become
the soil for the development of distribution network big data and data-
driven technology. Therefore, it is necessary to study DNR based on
data drive (Ozcanli et al., 2020).

In existing studies, literature (Kim et al., 1993) regarded DNR
as a switching state prediction problem based on network
parameter matrix, so as to be applicable to the solution mode of
NN. Literature (Zheng et al., 2020) used lSTM-based probability
distribution prediction network to extract the reference joint
probability distribution of DG output and load from historical

data, and then applied it to the robust optimization and
reconfiguration of three-phase unbalanced distribution network.
Literature (Oh et al., 2020) proposed an online reconfiguration
method of distribution network based on reinforcement learning.
The voltage and load state of distribution network buses were
introduced into the reinforcement learning reward mechanism,
and the optimal topology was obtained by Deep Q-learning DQL
algorithm. Convolutional Neural Network (CNN) was used in
literature (Yin et al., 2020) to solve DNR problems, and an
overall model was constructed based on the idea of loop com-
bination, which verifies the effectiveness of CNN. Ji et al. (2021)
proposes a dynamic distribution network reconfiguration model
based on LSTM, which takes the network loss and switching action
cost of the distribution system as the optimization objectives, and
realizes the real-time reconfiguration while reducing the system
operating cost and switching loss. In Malekshah et al. (2022), a
dynamic distribution network reconfiguration method based on
deep Q learning algorithm is proposed under the condition of a
large number of distributed generation equipment being connected
to the grid. The optimization objective is to minimize the network
loss and voltage deviation, so as to realize the economical and
reliable operation of the distribution system. A three-stage
distribution network reconfiguration method based on deep
deterministic policy gradient (DDPG) is proposed in Bui and Su
(2022). By changing the topology of the system and the access
location of the distributed power supply, the operating cost and
load loss of the system can be reduced. Wang et al. (2021) proposes
a distribution network reconfiguration method based on NoisyNet
deep Q-learning network (DQN), which gets rid of the constraint
of network structure to a certain extent, and achieves the purpose of
reducing power consumption and improving voltage level.

Therefore, based on previous work, this paper proposes a fast
reconfiguration model of distribution network based on convolutional
neural network:

(1) The CNN-based distribution network fast reconfiguration model
proposed for the first time in this paper, which does not require
the complex and time-consuming iterative calculation, thus
significantly improving the solution efficiency.

(2) The Inception module (Szegedy et al., 2016) is introduced into the
CNN model to extract multi-scale features of data through
multiple convolution channels in parallel, which effectively
improves the ability of the CNN model to extract data features.

The rest of this paper is structured as follows. Section 2 introduces
the principle and model building of CNN. Section 3 describes the data
set construction of CNN-DNR model. The case studies are conducted
in Section 4 to verify the proposed model, and the conclusions are
drawn in Section 5.

2 Principle and model building of CNN

The powerful feature extraction performance of CNN comes
from its deep structure and convolution operation, which is further
enhanced by the expansion of Inception module on the network
scale. Therefore, in this paper, the Inception V3 module is used as
the basic unit for feature extraction, combined with the loop
structure of the distribution network to construct the DR-CNN
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model, and the integrated network is trained based on the method
of weight transfer.

2.1 CNN infrastructure

The infrastructure of CNN is shown in Figure 1A. The basic CNN
structure consists of convolution, activation and pooling. In general,
when processing classification tasks, the output of CNN is taken as the
input of the full connection layer, and the mapping be-tween input
matrix and label set is completed by the full connection layer.

2.2 CNN model building

DNR based on CNN can be regarded as a prediction problem of
distribution net-work switch status. Data features of distribution
network load patterns are extracted through Inception module to
match the corresponding switch status. The calculation of switching
state is based on Softmax classifier, and the number of classification is
the same as the number of distribution network buses. In order to
improve the performance of the classifier, the whole CNN model is
constructed with the structure of split loop and multi-classifier.

2.2.1 Google inception module structure
In order to facilitate the extraction of high-dimensional features of

data, the Inception module is used to build a CNN model.

Inception module is the basic component of GoogLeNet. This
module decomposes the larger convolution layer in CNN into smaller
convolution layer and pooling layer, which can improve the performance
in the following two aspects: First, network learning parameters are
reduced through the decomposition of the convolution layer, and the
model learning efficiency is improved. Second, the decomposition of the
convolution layer enables the model to have the ability of multi-channel
information processing, which improves the breadth of the network.
Since the model outputs the summary of multi-channel processing
results, the information representation ability is enhanced. The specific
operation of convolution kernel decomposition is as follows:

(1) Convolution kernel decomposition. 5 × 5 convolution is
decomposed into two serial 3 × 3 convolution with the same
receptive field, while the latter has more non-linear operations.
The number ratio of the two parameters is (32 + 32)/52 � 0.72 ,
that is, the number of parameters is reduced by 28%.

(2) Convolution decomposition of space. Decomposition of 3 × 3
convolution into the asymmetric convolution of 3 × 1 and 1 × 3
in series can also improve the representation ability. The ratio of
the two parameters was (3 × 1 + 3 × 1)/32 ≈ 0.66 , and the
number of parameters decreased by 33%.

The form of convolution decomposition can be seen in the Inception
module structure shown in Figure 1B. As can be seen from Figure 1B,
Inception module expands both the breadth and depth of the network.
That is, pooling operation and multi-scale convolution processing are

FIGURE 1
Basic structure of CNN model.
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adopted to process data. Such multi-channel data processing method
increases the network breadth. The decomposition of convolution kernel
increases the depth of the network, and also increases the number of
activation functions, thus strengthening the characterization ability of the
network.

2.2.2 Single loop CNN model
Power switch classification problem requirement model to predict

all the state of the switch in the power distribution network, to reduce
the pressure of the classification of the Softmax classifier, this paper
takes the IEEE 33 buses system as an example, based on the loop
structure of distribution network structures, multiple single loop CNN
submodel, combining classifier output of each submodels predict each
state of the switch. The structure of CNN sub-model is shown in
Figure 1C.

As can be seen from Figure 1C, the model first preprocesses the
input distribution network parameter matrix rows with convolution
and pooling, and then imports the feature extraction part composed of
Inception module. The data features are transmitted to the full
connection layer after secondary sampling and flattening for
mapping be-tween data and labels. Finally, Softmax function is
used to calculate and output the state prediction results of each
switch in the corresponding loop.

Loop switch state prediction is a multi-classification problem, and
its loss optimization process is as follows:

(1) The Softmax classifier outputs the classification index. The
Softmax function is defined as the ratio of the exponent of a
single element to the exponent sum of all elements:

Zη � ezη

∑ce
zc

(1)

(2) The loss of the model is calculated based on classification cross
entropy:

L θ( ) � −1
k
∑k
m�1

∑c
n�1

ym,n · log Zθ, m,n( ) z( )( ) (2)

(3) The model loss value is imported into the optimizer to update the
network weights, and the Adaptive Moment Estimation (Adam)
method is used to accelerate the gradient descent.

Adam algorithm is the combination of momentum acceleration
decline and root mean square back propagation. By calculating the first
and second moment estimates of the gradient, independent adaptive
learning rates are designed for different parameters. The algorithm can
correct the problems of learning rate disappearance and slow con-vergence
in the optimization process, and its iterations are as follows:

gt � ∇θLt θt−1( )

m̂t � β1mt−1 + 1 − β1( )gt

1 − βt1

v̂t � β2vt−1 + 1 − β1( )g2
t

1 − βt2

θt � θt−1 − αm̂t��̂
vt

√ + ε

t � t + 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

2.2.3 Loop model integration
In the reconfiguration calculation of distribution network, the

actions of switches between loops will affect each other. Therefore, the
interaction between sub-models should also be considered in the
training of CNN model for unified optimization. The structure of
the integration model is shown in Figure 1D.

It can be seen from Figure 1D that the number of branches of
the integration model is the same as the loop number L of the
distribution network. During the data input phase of the model, a
convolutional layer with Batch Normalization BN is set up for
initial data processing, which is then fed into each circuit sub-
model.

The Concatenate layer is used to combine the output of the model,
and the final output of the model is the splicing of the output of sub-
model classifiers in the first dimension:

Ocon � O1,O2, ...,Ol[ ] (4)
The model output needs to be combined with the corresponding

data labels to calculate the loss of each branch, and take the maximum
value to participate in the weight iteration of the model. The loss is
calculated as:

Lc � max L1, L2, ..., Ll[ ] (5)
For the loss Lc calculated by the model, the iteration format of

Adam algorithm’s parameters is:

gc
t � ∇θL

c
t θct−1( )

m̂l,t � β1ml, t−1( ) + 1 − β1( )gc
t

1 − βt1

v̂l,t � β2vl, t−1( ) + 1 − β1( ) gc
t( )2

1 − βt2

θl,t � θl,t − αm̂l,t���
v̂l,t

√ + ε

t � t + 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

2.3 Model mixed training based on weight
transfer

Aiming at the difficulty of training due to the complex structure of
the integrated model, this paper adopts the hybrid training method
based on weight transfer to train the model. The process can be
divided into three stages: single loop model training—weight
transfer—integrated model mixed training.

The following constraints are set as the criteria for process
termination in the training:

(1) Training cycle constraints

E>Eset (7)

(2) Optimization effect constraint

LE < LE+e, e � 1, 2, ..., Elim (8)
The training process is shown in Figure 2. The specific steps are as

follows:
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Step 1: Load single-loop data of distribution network for data
processing. The distribution network parameter matrix is
normalized, the loop switch state is converted into one HOT code,
and the training set and test set are divided.

Step 2: Load the single-loop model and initialize the model
parameters.

Step 3: Import data, extract data features, and complete the forward
propagation process.

Step 4:Calculate the state probability matrix of loop switch according
to Formula 1. The larger the matrix element value is, the greater the
probability of switch dis-connection is.

Step 5: According to the output matrix obtained in Step 4 and the
switch coding in Step 1, calculate themodel loss according to Formula 2.

Step 6: Constraint judgment. According to the initial training rounds
and callback round limits of the model, determine whether the training
process is terminated in combination with Eqs 7, 8. If yes, end the
training and save the model, and go to Step 8. Otherwise, go to Step 7.

Step 7: Calculate the new weights according to Formula 3, update the
networkweights, complete the back propagation process, and go to Step 3.

Step 8: Extract weight of single loop model.

Step 9: Load the overall data of distribution network, normalize the
data, and convert labels into one-HOT coding.

Step 10: Load the integration model, and import the corresponding
sub-model weights for each branch.

Step 11: Import data, extract data features, and complete the forward
propagation process.

Step 12: Calculate the output of Softmax classifier according to Eq. 1,
and the output is the state probability matrix of each loop switch, as
shown in Eq. 4.

Step 13: According to the output matrix obtained in Step 12,
combined with the switch coding in Step 8, the model is calculated
according to Eqs 2, 5.

Step 14: Constraint judgment: Determine whether the training
process is terminated according to Eqs 7, 8. If so, end the training
and save the model. Otherwise, go to Step 15.

Step 15: Calculate the new weights according to Formula 6, update
the network weights, complete the back propagation process, and go to
Step 11.

3 Data set construction of CNN-DNR
model

The data set of convolutional neural network in this paper is a
data set composed of system load mode and corresponding
optimization switch combination, and its construction process is
shown in Figure 3.

FIGURE 2
Training process.
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3.1 Load patterns of CNN datasets

Load mode is the set of all load demand states of the
system. For a given system, the demand-based load mode is
divided into: load mode is the set of all load demand states of
the system. For a given system, the demand-based load mode is
divided into:

LM � MN (9)
According to the percentage of peak load demand, demand level is

classified into eight levels. The corresponding relationship between
actual load and calculated load is shown in Table 1.

In order to further reduce the data complexity, the load bus is
divided into three groups: industrial, commercial and residential. The
loads in the same group have similar load characteristics and change
curves. By considering the total requirements of the load group, the
number of load modes can be reduced to 83 � 256.

3.2 Distributional robust optimization model
based on box decomposition algorithm

In this paper, Quantum Particle Swarm Optimization (QPSO)
algorithm is adopted to solve the corresponding switch combination
for the load mode divided. The algorithm takes the minimum active
power loss of the system as the objective function.

minf � ∑Nb

b�1
Kb · Rb · I2b (10)

The optimized switch combination should meet the following
constraints:

(1) Topology constraints

φ ∈ Γ (11)

(2) Flow constraint

Pi + PDG
i � PL

i + Vi∑N
j�1
Vj Gij cos δij + Bij sin δij( )

Qi + QDG
i � QL

i + Vi∑N
j�1
Vj Gij cos δij + Bij sin δij( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(12)

(3) Bus voltage constraint

Vi ∈ Vi
min, Vi

max[ ] (13)

(4) Branch capacity constraints

Sb ≤ Sb
max (14)

3.3 Data and label processing

The training of CNN model requires training data and
corresponding labels, which are transformed from load mode and
optimization topology respectively. According to the training
requirements of CNN, the input data is the load mode after matrix
and normalization. Label distribution loop topology in one-HOT
encoding format.

The matrix Λ describing the parameters of the distribution
network is taken as the input matrix of the CNN model, where the
number of columns of the matrix is consistent with the number of
nodes of the training system, and each row of the matrix represents
different data types of the distribution network such as the access
state of DG, the active power of DG, the reactive power of PQ-type
DG, the voltage of PV type DG, the current of PI type DG, the type
of DG, the active power of load and the reactive power of each
node.

FIGURE 3
Data set construction process.

TABLE 1 Comparison of actual load and calculated load.

Actual load Computational load (%)

≤35% 30

36%–45% 40

46%–55% 50

56%–65% 60

66%–75% 70

76%–85% 80

86%–95% 90

≥96% 100
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Λ �

FDG
1 FDG

2 ... FDG
i ... FDG

N

PDG
1 PDG

2 ... PDG
i ... PDG

N

QPQ
1 0 ... 0 ... QPQ

N

0 VPV
2 ... 0 ... VPV

N

0 0 ... IPI3 ... IPIN
TDG
1 TDG

2 ... TDG
i ... TDG

N

PL
1 PL

2 ... PL
i ... PL

N

QL
1 QL

2 ... QL
i ... QL

N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
8×N

(15)

Before model training, data shown in Eq. 15 should be normalized
and ex-pressed as:

Aa � Λa

λa
(16)

The network topology needs to be transformed into the one-hot
coding combination of each loop topology, and then regarded as the
label of multi-classification problem. The radial topology constraint of
distribution network requires that only one switch in each loop is off at
the same time. According to this characteristic, the status of the loop
interrupt on switch is set to 1, and the status of the closed switch is set
to 0. In this way, the loop lb with branches has lb states, and only one
switch in each state is in the open position, which conforms to the one-
HOT encoding format. Taking the IEEE16 bus system as an example,
the one-Hot coding principle of loop topology is explained in detail.

For switch configuration Ch , its corresponding one-HOT code is
as follows:

Ch � B14, B15, B16[ ]
H1,h � 0, 0, 0, 0, 0, 1[ ]
H2,h � 0, 0, 0, 0, 1[ ]
H3,h � 0, 0, 0, 0, 0, 0, 1[ ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (17)

For a power distribution system with l loops, each input matrix A
has a corresponding one-hot code H of l loops. Based on this principle,
the DNR problem can be transformed into the switch multi-
classification problem of each loop.

4 Case studies

In order to verify the effectiveness of the distribution
network rapid reconfiguration model based on deep learning
proposed in this paper, IEEE 33-bus power distribution
system is taken as a test example, and the system structure is
shown in Figure 4 and the system loop-branch division is shown in
Table 2. Based on Python environment programming, call Keras
deep learning library to build the model. The computer operating
system is Windows10. The CPU is Intel I7 1165G7, the main
frequency is 2.8 GHz, and the memory is 8 GB. Table 2.

The specific parameters of the DG are shown in Table 3. The
connected DG is di-vided into 30%, 60%, and 100% according to the
output level. Therefore, there are 19 scenarios of distributed power
supply.

FIGURE 4
IEEE 33-bus system.

TABLE 2 IEEE 33-bus system loop-branch division.

Loop Contains branch

1 {B2,B3,B5,B6,B7,B18,B19,B20,B33}

2 {B9,B10,B11,B12,B13,B14,B34}

3 {B2,B3,B4,B5,B6,B7,B8,B9,B10,B18,B19,B20,B21,B35}

4 {B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,B17,B25,B26,B27,B28,B29,B30,B31,B32,B36}

5 {B3,B4,B5,B23,B24,B25,B26,B27,B28,B37}
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4.1 Model training effect

4.1.1 Training
The dataset contains 19 DG scenarios as shown in Table 3,

each of which is divided into 512 load modes and a total of
9,728 system state sections. In the training process, the proportion
of training set to total data is 80%, test set to 15%, verification set
to 5%. To verify the performance advantage of the CNN model
based on Inception module in this paper, the training effect is
compared with that of the basic CNN model. The accuracy of
the two models on the training set and test set is shown in
Figure 5.

It can be seen from Figure 5 that the Inception CNN model has
better feature extraction capability than the basic convolutional
model. The training effect of the former on the training set and test
set and the overall accuracy increase rate of the former are better
than the latter. After 250 rounds of training, the accuracy of the
model in the training set and test set is 99.31% and 99.28%

respectively. From the curve trend, in the first 50 rounds, the
precision of the model training set is ahead of that of the test set.
During the 50 to 250 rounds of training, the accuracy curves of the
two are similar, and tend to be stable after 200 rounds. In the early
stages of training (rounds 0–25), due to the differences among the
branches of the Inception model, which enable the optimization of
the test accuracy is delayed. Thereby, resulting in the classification
accuracy of the Inception test set being lower than that of the basic
Conv model test set. Due to the focus of the hybrid training method
on the high-loss branch of the model, the final training effect of the
model is guaranteed.

4.1.2 Generalization ability
According to Figure 6, the main operation switches of system

optimization recon-figuration are located at B7, B9, B14, B23, and B26.
In addition, the classification error of the model is mainly reflected in
the confusion of switch states between branches B9-B10-B14 and
B22-B23.

TABLE 3 DG configuration.

Serial number DG number Type Parameter (p.u.) Added bus

1 0 - - -

2 1 PQ P = 0.03, Q = 0.01 18

3 4 PQ P = 0.03, Q = 0.01 18, 22, 25, 33

4 1 PV P = 0.03, |U| = 0.95 18

5 4 PV P = 0.03, |U| = 0.95 18, 22, 25, 33

6 1 PI P = 0.03, |I| = 0.0325 18

7 4 PI P = 0.03, |I| = 0.0325 18,22,25,33

FIGURE 5
Accuracy of model classification.
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In addition, the performance index of DL model is the
quantification of model performance based on confusion matrix,
including accuracy, recall rate and F1 score. Accuracy rate
represents the real tag proportion of model prediction results.
Recall rate represents the prediction accuracy of the model for real
labels. The F1 score is the harmonic average of the first two, and the
F1 score of the model is positively correlated with its performance. The
classification index of action branch based on confusion matrix is
shown in Table 4.

It can be seen from Table 4 that the switch classification prediction
effect of the model for large sample branches and most small sample
branches is good, and each performance score is above 99. However, the
classification performance of small sample branches B10 and
B22 decreased, and their F1 scores were 97.15 and 90.91, respectively.
It shows that insufficient label sample size will lead to the decrease of
model generalization ability. The reason is on the one hand, the data
feature coverage of small sample is not complete. On the other hand, it is
the coverage of large sample features to small sample features in data sets.

FIGURE 6
Loop confusion matrix.

TABLE 4 Classification index of main action branch.

Branch Number of samples Accuracy (%) Recall rate (%) F1 score

B6 131 100 100 100

B7 573 100 100 100

B8 71 100 100 100

B9 451 100 99.33 99.66

B10 52 96.23 98.08 97.15

B13 24 100 100 100

B14 448 99.56 100 99.78

B17 72 100 100 100

B22 5 83.33 100 90.91

B23 243 100 99.59 99.79

B26 219 100 100 100

B32 55 100 100 100
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4.2 Model performance analysis

4.2.1 Solution efficiency analysis
In order to verify the timeliness of THE CNNmodel, 2,000 groups

of data were randomly selected from the data set as the prediction
target, and imported into the CNN model completed by training for
prediction and timing. The results of program running time are shown
in Table 5. In Table 5, a and b are configured to simulate offline
operation, and the model loading time is included in the total time
consumed, which includes the model loading time and the program
operation time. Configuration c is set to simulate online operation, and
the total time consumed is only the operation time of the program.

By comparing the operation of each configuration in Table 5, it can
be seen that the model loading time accounts for more than 65% of the
total offline operation. Excluding model loading, the calculation time
of all three is less than 2 ms, showing no significant difference. By
comparing configuration A and B, it can be seen that when the amount
of calculation data is increased, the proportion of model loading time

decreases from 93.43% to 65.35%, and the influence on the total time is
reduced.

The standard IEEE33-bus distribution network is taken as the test
system. The proposed method is compared with QPSO, improved
cuckoo algorithm improved cuckoo search algorithm (ICSA), random
forest (RF) and long short-term memory (LSTM) to calculate the
average of 50 metaheuristic algorithms. The solution results are shown
in Table 6.

As shown in Table 6, compared with QPSO, ICSA, RF, and LSTM
methods, the online and offline operation time of the proposed
method is significantly reduced and controlled to within 1s in
terms of solution efficiency. Therefore, the proposed method can
realize the rapid reconfiguration of distribution network, because the
CNN model does not need to perform iterative optimization in the
solution space. The reconfiguration strategy can be directly obtained
according to the mapping relationship between the load pattern
established in the training process and the reconfiguration strategy.
In terms of network loss, the loss reduction ability of all the five

TABLE 5 Program running time statistics.

Configuration Amount of data Running time (s) All time calculation (ms) Model and data loading

Time (s) Ratio (%)

a 2000 60.77 1.99 58.78 93.43

b 20,000 86.89 1.51 58.78 65.35

C 2000 3.99 1.99 – –

TABLE 6 Comparison of algorithm solution time.

Algorithm QPSO ICSA RF LSTM The algorithm in this paper

Online Offline

Time/s 7.315 4.509 4.767 5.137 0.002 0.641

Loss/kW 139.584 139.554 139.569 139.588 139.554 139.554

FIGURE 7
Results and effects after DNR.
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algorithms is similar. Among them, the network loss of the ICSA
algorithm is the same as that of the proposed method, which is
139.554 KW, while the network loss of the other three methods is
slightly higher but it can be maintained below 139.590 KW. Therefore,
compared with other algorithms, the fast reconfiguration method of
distribution network based on CNN proposed in this paper improves
the solution efficiency and reduces the system network loss at the
same time.

In conclusion, there is no significant difference between online and
offline data calculation speed of CNN model, while the influence of
model loading time on the overall calculation speed can be diluted by
increasing single input data amount in offline calculation. In addition,
the precision of data-driven model needs a large amount of data
support, while the meta-heuristic algorithm has little data
requirements, which is more advantageous in the optimization and
reconfiguration of new systems. Therefore, CNN model is more
suitable for the scenarios of online real-time reconfiguration and
mass reconfiguration of data operations.

4.2.2 Loss reduction effect analysis
In order to verify the effect of CNN model in loss reduction

proposed in this paper, 190 groups of data in the validation set were
extracted for prediction, and network loss and voltage level before and
after reconfiguration were compared and predicted. Figure 7A shows
the comparison of network loss before and after reconfiguration.

According to Figure 7A, compared with the topology before
system reconfiguration, the topology optimized by CNN has lower
network active power loss. According to the loss reduction percentage
curve, in the test data, the average network loss of the system is
reduced by 35.63% after network reconfiguration. The reason is that
CNN’s optimized re-selection of network open-loop points balances
the power flow of each branch and reduces the active network loss of
the system.

4.2.3 Analysis of improvement effect of voltage level
Further, in order to analyze the influence of CNNmodel proposed

in this paper on voltage before and after reconfiguration. Figures 8A,B
respectively show the comparison diagram of bus minimum voltage
and voltage range before and after system re-configuration. Figure 7B
shows the effect of the reconfiguration on the system voltage level.

It can be seen from Figures 8A,B that the optimization of network
bus voltage by CNN prediction topology is reflected in the increase of
bus minimum voltage and the decrease of bus voltage range.
According to Figure 7B, in the test data, the voltage range
decreased by 35.47% on average, and the minimum voltage of
system buses increased by 1.76% on average. The reason is that
CNN prediction topology optimizes the power flow of the system,
reduces the voltage loss of each branch, reduces the voltage difference
between buses, improves the power supply quality of the system, and
contributes to the low-carbon economic operation of the distribution
network.

FIGURE 8
Comparison of bus voltage.

TABLE 7 DG Configuration.

Bus Type Active power (MW) Power factor

140 photovoltaic 10 0.8

45 photovoltaic 1 0.9

7 photovoltaic 1 0.8

114 photovoltaic 1 0.9

18 wind power 0.5 0.85

52 wind power 0.5 0.9

181 wind power 0.4 0.85

145 wind power 0.4 0.9
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4.2.4 185 bus system
In order to further verify the effectiveness of the fast

reconfiguration method of low-carbon distribution network based
on CNN in large-scale distribution systems, a 185-bus distribution
system is taken as a test system. The system has 185 buses,
184 branches and 75 switches, including 20 tie switches and
55 segment switches. The parameters of DGs are shown in Table 7.

The results of program running time are shown in Table 8. As can be
seen, due to the complexity of the 185-bus test system, the CNN model
requires additional parameters to describe the relationship between load
patterns and reconfiguration strategies, resulting in model data loading
times and mean times longer than the IEEE33 node system, ultimately
increasing the solution time. However, even though the test system ismore
complex, the mean solution time of the proposed CNN model remains
below 2.5 ms and rapid reconfiguration is achieved.

Running results of 185-bus system are shown in Table 9. It can been
seen in Table 9, compared with the original network, CNN reduces the
power loss by 22.86% while improving the lowest node voltage from
0.9253p.u. to 0.9508 p.u. As a result, the CNN method proposed in this
paper also has good performance advantages in the 185-node system.

5 Conclusion

This paper proposes a power distribution network based on
convolution neural network fast reconfiguration model, based on
system load model and the corresponding optimization
combination switch building data sets, using CNN to extract data
collection of information, and to all the status of the network switch
decisions, the last on IEEE33 bus system validation DNR performance
of the proposed CNN model in this paper. Through the analysis of
examples, the following conclusions are obtained:

(1) The CNN model based on Inception module has stronger feature
extraction capability and better final training effect, and the
resulting model has good generalization capability for
validation sets.

(2) The CNNmodel constructed in this paper has an average decision
speed of milli-second level, which is suitable for online fast
reconfiguration and offline mass computation.

(3) The network topology predicted by the model can effectively
improve the power supply quality and low-carbon operation
economy of the distribution system.

Although the distribution network fast reconfiguration algorithm
based on CNN proposed in this paper has excellent performance in
static reconfiguration for a single period, the performance of this
method in dynamic reconfiguration has not been verified. In the future
research, the data-driven distribution network dynamic
reconfiguration combined with the reconfiguration cycle division
can be further studied, so as to realize the formulation of multi-
period reconfiguration strategy.
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TABLE 8 185 bus system program running result.

Configuration Amount of data Running time (s) Average time (ms) Model data loading

Time(s) Account (%)

a 2,000 81.03 2.30 76.41 94.29

b 20,000 121.81 2.13 76.41 64.20

c 2,000 4.62 2.31 – –

TABLE 9 185 bus system program running time statistics.

Loss (kW) Lowest bus voltage (p.u.) Loss reduction rate (%)

Original network 2843.20 0.9253 –

CNN model 2193.13 0.9508 22.86
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Nomenclature

Sets

Ocon Final output of the network

Οl Model output of loop l

Lc Calculated loss of the model

Ll Loss value returned by submodel l

Λ Parameter matrix

Ch The h-th switch configuration scheme of the system

Parameters

c Total number of categories

k Number of batch samples

ym,n The true probability of sample m on classification n

α Learning rate

β1/β2 The exponential decay rates of the first and second moments
respectively

gct Gradient of loss value

Lct To weight θ

LM The number of load modes

Nb Total number of system branches

Γ Set of all connected network structures

Vi
min/Vi

max The lower and upper voltage limits of bus i

Sb max The upper limit of branch b capacity

N Total number of buses in the system

H1,h/H2,h/H3,h The one-hot codes of loops 1, 2, and 3

Variables

Zη Output of neuron η

zη Input of neuron η

L(θ) Model loss under weight θ

t Time step

gt Gradient of Lt(θt−1) with respect to θt−1
m̂t The correction of the first moment estimation of gradient mt

v̂t The correction of the second moment estimation of gradient vt

Eset The default value of the training cycle

E The predicted loss under the current training cycle

LE Binary variable gas turbines start up

Elim The cycle limit of the callback function

Kb The 0–1 variable representing the open state of branch b

Rb The resistance of branch b

Ib The current flowing through the branch

φ Network structure obtained through reconfiguration

Pi/Qi The injected active power and reactive power of bus i

PDG
i /QDG

i The active power and reactive power injected by DG into
bus i respectively

Vi/Vj The voltages of buses i and j respectively

Gij/Bij/δij The conductance, susceptance and phase Angle difference
between ij buses respectively

Sb Apparent power of branch b

FDG
i DG access status of bus i

PDG
i Active output of bus i access DG

VPV
i Voltage unit value of PV type DG

IPIi Current unit value of PI type DG

TDG
i DG type of A-Bus i

PL
i /Q

L
i Load active and reactive power of bus i respectively

Aa row a of model input matrix A

Λa row a of parameter matrix Λ

λa Maximum number of elements in Λa
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